日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知圓N:(x+2)2+y2=8和拋物線C:y2=2x,圓N的切線l與拋物線C交于不同的兩點(diǎn)A,B.
          (I)當(dāng)直線Z酌斜率為1時(shí),求線段AB的長(zhǎng);
          (II)設(shè)點(diǎn)M和點(diǎn)N關(guān)于直線y=x對(duì)稱,問(wèn)是否存在直線l,使得?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

          【答案】分析:(1)由圓N:(x+2)2+y2=8,知圓心N為(-2,0),半徑r=2,設(shè)A(x1,y1),B(x2,y2),設(shè)l的方程為y=x+m,由直線l是圓N的切線,知,解得直線l的方程為y=x-2,由此能求出弦長(zhǎng)|AB|.
          (2)設(shè)直線l的方程為y=kx+m,由直線l是圓N的切線,得,解得此時(shí)直線l的方程為y=-x+2;當(dāng)直線l的斜率不存在時(shí),l的方程為x=2-2,則得不成立.綜上所述,存在滿足條件的直線l,其方程為y=-x+2.
          解答:解:(1)∵圓N:(x+2)2+y2=8,
          ∴圓心N為(-2,0),半徑r=2,
          設(shè)A(x1,y1),B(x2,y2),
          當(dāng)直線的斜率為1時(shí),設(shè)l的方程為y=x+m,即x-y+m=0,
          ∵直線l是圓N的切線,∴
          解得m=-2,或m=6(舍去)
          此時(shí)直線l的方程為y=x-2,
          ,消去x得y2-2y-4=0,
          ∴△=(-2)2+16=20>0,
          y1+y2=2,y1•y2=4,
          ,
          ∴弦長(zhǎng)|AB|=
          (2)(i)設(shè)直線l的方程為y=kx+m,即kx-y+m=0(k≠0),
          ∵直線l是圓N的切線,∴,
          得m2-4k2-4mk-8=0,①
          ,消去x得ky2-2y+2m=0,
          ∴△=4-4k×2m>0,即km<且k≠0,
          ,
          ∵點(diǎn)M與點(diǎn)N關(guān)于直線y=x對(duì)稱,∴N(0,-2),
          ,,
          ,∴x1x2+(y1+2)(y2+2)=0,
          將A,B在直線y=kx+m上代入并化簡(jiǎn),得
          ,
          代入,

          化簡(jiǎn),得m2+4k2+2mk+4k=0,②
          ①+②得2m2-2mk+4k-8=0,
          即(m-2)(m-k+2)=0,
          解得m=2,或m=k-2.
          當(dāng)m=2時(shí),代入①,解得k=-1,滿足條件,且k≠0,
          此時(shí)直線l的方程為y=-x+2.
          當(dāng)m=k-2時(shí),代入①整理,得7k2-4k+4=0,無(wú)解.
          (ii)當(dāng)直線l的斜率不存在時(shí),
          因?yàn)橹本l是圓N的切線,所以l的方程為x=2-2.
          則得,y1+y2=0,

          ,
          由①得:
          =x1x2+y1y2+2(y1+y2)+4
          =20-12≠0,
          當(dāng)直線l的斜率不存在時(shí),不成立.
          綜上所述,存在滿足條件的直線l,其方程為y=-x+2.
          點(diǎn)評(píng):本題考查線段長(zhǎng)的求法,探索直線是否存在,具體涉及到圓的簡(jiǎn)單性質(zhì)、拋物線的性質(zhì)及其應(yīng)用、直線與圓錐曲線的位置關(guān)系的應(yīng)用.綜合性強(qiáng),難度大,是高考的重點(diǎn).解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知圓N:(x+2)2+y2=8和拋物線C:y2=2x,圓的切線l與拋物線C交于不同的兩點(diǎn)A,B,
          (1)當(dāng)直線l的斜率為1時(shí),求線段AB的長(zhǎng);
          (2)設(shè)點(diǎn)M和點(diǎn)N關(guān)于直線y=x對(duì)稱,問(wèn)是否存在直線l使得?若存在
          MA
          MB
          ,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•煙臺(tái)二模)已知圓N:(x+2)2+y2=8和拋物線C:y2=2x,圓N的切線l與拋物線C交于不同的兩點(diǎn)A,B.
          (I)當(dāng)直線Z酌斜率為1時(shí),求線段AB的長(zhǎng);
          (II)設(shè)點(diǎn)M和點(diǎn)N關(guān)于直線y=x對(duì)稱,問(wèn)是否存在直線l,使得
          MA
          +
          MB
          ?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省紹興一中高二(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

          已知圓N:(x+2)2+y2=8和拋物線C:y2=2x,圓的切線l與拋物線C交于不同的兩點(diǎn)A,B,
          (1)當(dāng)直線l的斜率為1時(shí),求線段AB的長(zhǎng);
          (2)設(shè)點(diǎn)M和點(diǎn)N關(guān)于直線y=x對(duì)稱,問(wèn)是否存在直線l使得?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012年山東省煙臺(tái)市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

          已知圓N:(x+2)2+y2=8和拋物線C:y2=2x,圓N的切線l與拋物線C交于不同的兩點(diǎn)A,B.
          (I)當(dāng)直線Z酌斜率為1時(shí),求線段AB的長(zhǎng);
          (II)設(shè)點(diǎn)M和點(diǎn)N關(guān)于直線y=x對(duì)稱,問(wèn)是否存在直線l,使得?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012年湖北省黃岡市英山一中高考數(shù)學(xué)模擬試卷1(文科)(解析版) 題型:解答題

          已知圓N:(x+2)2+y2=8和拋物線C:y2=2x,圓的切線l與拋物線C交于不同的兩點(diǎn)A,B,
          (1)當(dāng)直線l的斜率為1時(shí),求線段AB的長(zhǎng);
          (2)設(shè)點(diǎn)M和點(diǎn)N關(guān)于直線y=x對(duì)稱,問(wèn)是否存在直線l使得?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案