【題目】一正方體的棱長為,作一平面
與正方體一條體對角線垂直,且
與正方體每個面都有公共點(diǎn),記這樣得到的截面多邊形的周長為
,則( )
A.B.
C.
D.以上都不正確
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求
的極值;
(2)設(shè),對任意
都有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)市場調(diào)查:生產(chǎn)某產(chǎn)品需投入年固定成本為萬元,每生產(chǎn)
萬件,需另投入流動成本為
萬元,在年產(chǎn)量不足
萬件時,
(萬元),在年產(chǎn)量不小于
萬件時,
(萬元).通過市場分析,每件產(chǎn)品售價為
元時,生產(chǎn)的商品能當(dāng)年全部售完.
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量
(萬件)的函數(shù)解析式;
(2)當(dāng)產(chǎn)量為多少時利潤最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù))。在極坐標(biāo)系(與直角坐標(biāo)系
取相同的長度單位,且以原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸)中,圓
的極坐標(biāo)方程為
。
(1)求直線的普通方程和圓
的直角坐標(biāo)方程;
(2)設(shè)圓與直線
交于
,
兩點(diǎn),若點(diǎn)
的坐標(biāo)為
,求
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的兩個頂點(diǎn)A,B的坐標(biāo)分別為(,0),(
,0),圓E是△ABC的內(nèi)切圓,在邊AC,BC,AB上的切點(diǎn)分別為P,Q,R,|CP|=2
,動點(diǎn)C的軌跡為曲線G.
(1)求曲線G的方程;
(2)設(shè)直線l與曲線G交于M,N兩點(diǎn),點(diǎn)D在曲線G上,是坐標(biāo)原點(diǎn)
,判斷四邊形OMDN的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)),以原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(Ⅰ)寫出直線的普通方程和曲線
的直角坐標(biāo)方程;
(Ⅱ)已知點(diǎn),直線
與曲線
相交于點(diǎn)
,求
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com