【題目】已知函數(shù)的圖象在點(diǎn)
處的切線(xiàn)與直線(xiàn)
平行.
(Ⅰ)求函數(shù)的極值;
(Ⅱ)若對(duì)于,
,求實(shí)數(shù)
的取值范圍.
【答案】(Ⅰ)在
處取得極大值為
,無(wú)極小值.(Ⅱ)
【解析】
(Ⅰ)求得f(x)的導(dǎo)數(shù),可得切線(xiàn)的斜率,由兩直線(xiàn)平行的條件:斜率相等,可得a,求出f(x)的導(dǎo)數(shù)和單調(diào)區(qū)間,即可得到所求極值;
(Ⅱ)設(shè)x1>x2,可得f(x1)﹣f(x2)>mx12﹣mx22,設(shè)g(x)=f(x)﹣mx2在(0,+∞)為增函數(shù),設(shè)g(x)=f(x)﹣mx2在(0,+∞)為增函數(shù),求得g(x)的導(dǎo)數(shù),再由參數(shù)分離和構(gòu)造函數(shù),求出最值,即可得到所求m的范圍.
(Ⅰ)的導(dǎo)數(shù)為
,
可得的圖象在點(diǎn)
處的切線(xiàn)斜率為
,
由切線(xiàn)與直線(xiàn)平行,可得
,即
,
,
,當(dāng)
時(shí)
,當(dāng)
時(shí), ,
所以在
上遞增,在
上遞減,
可得在
處取得極大值為
,無(wú)極小值.
(Ⅱ)設(shè),若
,可得
,
即
設(shè)在
上增函數(shù),
即在
上恒成立,
可得在
上恒成立,設(shè)
,所以
,
在
上遞減,在
上遞增,
在
處取得極小值為
,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】箱子里有16張撲克牌:紅桃、
、4,黑桃
、8、7、4、3、2,草花
、
、6、5、4,方塊
、5,老師從這16張牌中挑出一張牌來(lái),并把這張牌的點(diǎn)數(shù)告訴了學(xué)生甲,把這張牌的花色告訴了學(xué)生乙,這時(shí),老師問(wèn)學(xué)生甲和學(xué)生乙:你們能從已知的點(diǎn)數(shù)或花色中推知這張牌是什么牌嗎?于是,老師聽(tīng)到了如下的對(duì)話(huà):學(xué)生甲:我不知道這張牌;學(xué)生乙:我知道你不知道這張牌;學(xué)生甲:現(xiàn)在我知道這張牌了;學(xué)生乙:我也知道了.則這張牌是( )
A. 草花5B. 紅桃
C. 紅桃4D. 方塊5
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地因受天氣,春季禁漁等因素影響,政府規(guī)定每年的7月1日以后的100天為當(dāng)年的捕魚(yú)期.某漁業(yè)捕撈隊(duì)對(duì)噸位為的20艘捕魚(yú)船一天的捕魚(yú)量進(jìn)行了統(tǒng)計(jì),如下表所示:
捕魚(yú)量(單位:噸) | |||||
頻數(shù) | 2 | 7 | 7 | 3 | 1 |
根據(jù)氣象局統(tǒng)計(jì)近20年此地每年100天的捕魚(yú)期內(nèi)的晴好天氣情況如下表(捕魚(yú)期內(nèi)的每個(gè)晴好天氣漁船方可捕魚(yú),非晴好天氣不捕魚(yú)):
晴好天氣(單位:天) | |||||
頻數(shù) | 2 | 7 | 6 | 3 | 2 |
(同組數(shù)據(jù)以這組數(shù)據(jù)的中間值作代表)
(Ⅰ)估計(jì)漁業(yè)捕撈隊(duì)噸位為的漁船一天的捕魚(yú)量的平均數(shù);
(Ⅱ)若以(Ⅰ)中確定的平均數(shù)作為上述噸位的捕魚(yú)船在晴好天氣捕魚(yú)時(shí)一天的捕魚(yú)量.
①估計(jì)一艘上述噸位的捕魚(yú)船一年在捕魚(yú)期內(nèi)的捕魚(yú)總量;
②已知當(dāng)?shù)佤~(yú)價(jià)為2萬(wàn)元/噸,此種捕魚(yú)船在捕魚(yú)期內(nèi)捕魚(yú)時(shí),每天成本為10萬(wàn)元/艘;若不捕魚(yú),每天成本為2萬(wàn)元/艘,請(qǐng)依據(jù)往年天氣統(tǒng)計(jì)數(shù)據(jù),估計(jì)一艘此種捕魚(yú)船年利潤(rùn)不少于1600萬(wàn)元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為
,
為橢圓的左、右焦點(diǎn),過(guò)右焦點(diǎn)
的直線(xiàn)與橢圓交于
兩點(diǎn),且
的周長(zhǎng)為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若點(diǎn)A是第一象限內(nèi)橢圓上一點(diǎn),且在軸上的正投影為右焦點(diǎn)
,過(guò)點(diǎn)
作直線(xiàn)
分別交橢圓于
兩點(diǎn),當(dāng)直線(xiàn)
的傾斜角互補(bǔ)時(shí),試問(wèn):直線(xiàn)
的斜率是否為定值;若是,請(qǐng)求出其定值;否則,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形中,點(diǎn)
,
,
,對(duì)角線(xiàn)
,
交于點(diǎn)P.
(1)求直線(xiàn)的方程;
(2)若點(diǎn)E,F分別在平行四邊形的邊
和
上運(yùn)動(dòng),且
,求
的取值范圍;
(3)試寫(xiě)出三角形區(qū)域(包括邊界)所滿(mǎn)足的線(xiàn)性約束條件,若在該區(qū)域上任取一點(diǎn)M,使
,試求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)生為了測(cè)試煤氣灶燒水如何節(jié)省煤氣的問(wèn)題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開(kāi)關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開(kāi)一壺水所用時(shí)間
的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點(diǎn)圖(如下圖).
表中,
.
(1)根據(jù)散點(diǎn)圖判斷,與
哪一個(gè)更適宜作燒水時(shí)間
關(guān)于開(kāi)關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)
的回歸方程類(lèi)型?(不必說(shuō)明理由)
(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于
的回歸方程;
(3)若單位時(shí)間內(nèi)煤氣輸出量與旋轉(zhuǎn)的弧度數(shù)
成正比,那么,利用第(2)問(wèn)求得的回歸方程知
為多少時(shí),燒開(kāi)一壺水最省煤氣?
附:對(duì)于一組數(shù)據(jù),其回歸直線(xiàn)
的斜率和截距的最小二乘法估計(jì)值分別為
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形中,
,
,點(diǎn)
為
中點(diǎn),沿
將
折起至
,如下圖所示,點(diǎn)
在面
的射影
落在
上.
(Ⅰ)求證: ;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓為其左右焦點(diǎn),
為其上下頂點(diǎn),四邊形
的面積為
.點(diǎn)
為橢圓
上任意一點(diǎn),以
為圓心的圓(記為圓
)總經(jīng)過(guò)坐標(biāo)原點(diǎn)
.
(1)求橢圓的長(zhǎng)軸
的最小值,并確定此時(shí)橢圓
的方程;
(2)對(duì)于(1)中確定的橢圓,若給定圓
,則圓
和圓
的公共弦
的長(zhǎng)是否為定值?如果是,求
的值;如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com