日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】下列結(jié)論:

          “直線l與平面平行”是“直線l在平面外”的充分不必要條件;

          p,,則,;

          命題“設(shè)a,,若,則”為真命題;

          ”是“函數(shù)上單調(diào)遞增”的充要條件.

          其中所有正確結(jié)論的序號為______

          【答案】

          【解析】

          由線面的位置關(guān)系,結(jié)合充分必要條件的定義可判斷;由特稱命題的否定為全稱命題,可判斷;由原命題和逆否命題互為等價命題,可判斷;由導(dǎo)數(shù)大于等于0恒成立,結(jié)合充分必要條件的定義,可判斷

          “直線l與平面平行”可推得“直線l在平面外”,反之,不成立,直線l可能與平面相交,故“直線l與平面平行”是“直線l在平面外”的充分不必要條件,故正確;

          p,,則,,故錯誤;

          命題“設(shè)a,,若,則”的逆否命題為

          “設(shè)a,,若,則”,即為真命題,故正確;

          函數(shù)上單調(diào)遞增,可得恒成立,即有的最小值,可得,“”是“函數(shù)上單調(diào)遞增”的充分不必要條件,故錯誤.

          故答案為:

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】將一顆骰子先后拋擲2次,觀察向上的點數(shù).

          1 列舉出所有可能的結(jié)果,并求兩點數(shù)之和為5的概率;

          2 求以第一次向上點數(shù)為橫坐標(biāo)x,第二次向上的點數(shù)為縱坐標(biāo)y的點在圓 的內(nèi)部的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱柱中,平面,邊上一點,.

          (1)證明:平面平面.

          (2)若,試問:是否與平面平行?若平行,求三棱錐的體積;若不平行,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓M的方程為x2+y2-2x-2y-6=0,以坐標(biāo)原點O為圓心的圓O與圓M相切.

          1)求圓O的方程;

          2)圓Ox軸交于E,F兩點,圓O內(nèi)的動點D使得DE,DODF成等比數(shù)列,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}的前n項和為Sn,滿足Sn=2an-1nN*),數(shù)列{bn}滿足nbn+1-n+1bn=nn+1)(nN*),且b1=1

          1)證明數(shù)列{}為等差數(shù)列,并求數(shù)列{an}{bn}的通項公式;

          2)若cn=-1n-1,求數(shù)列{cn}的前n項和T2n;

          3)若dn=an,數(shù)列{dn}的前n項和為Dn,對任意的nN*,都有DnnSn-a,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對照數(shù)據(jù)

          (1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

          (2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(1)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?

          參考公式:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某種設(shè)備隨著使用年限的增加,每年的維護(hù)費相應(yīng)增加.現(xiàn)對一批該設(shè)備進(jìn)行調(diào)查,得到這批設(shè)備自購入使用之日起,前5年平均每臺設(shè)備每年的維護(hù)費用大致如表:

          年份(年)

          維護(hù)費(萬元)

          (I)從這年中隨機抽取兩年,求平均每臺設(shè)備每年的維護(hù)費用至少有年多于萬元的概率;

          (II)求關(guān)于的線性回歸方程;若該設(shè)備的價格是每臺萬元,你認(rèn)為應(yīng)該使用滿五年換一次設(shè)備,還是應(yīng)該使用滿八年換一次設(shè)備?并說明理由.

          參考公式:用最小二乘法求線性回歸方程的系數(shù)公式:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (I)若處取得極值,求過點且與處的切線平行的直線方程;

          (II)當(dāng)函數(shù)有兩個極值點,且時,總有成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點是拋物線上一點,的焦點.

          (1)若,上的兩點,證明:,依次成等比數(shù)列.

          (2)過作兩條互相垂直的直線與的另一個交點分別交于,(的上方),求向量軸正方向上的投影的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案