日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=
          1+x
          1-x
          +lg(2-2x+x2)
          的定義域為M,g(x)=
          ax
          x-1
          (a≠0,x∈[2,4])
          的值域為N.
          (1)求M;
          (2)若M∩N≠∅,求實數(shù)a的取值范圍.
          分析:(1)通過對數(shù)的真數(shù)大于0,無理式被開放數(shù)不小于0,列出不等式組,求出函數(shù)的定義域,即可得到M;
          (2)化簡g(x)的表達式,通過a>0與a<0利用函數(shù)的單調(diào)性集合M∩N≠Φ,求出a的范圍,然后求實數(shù)a的取值范圍.
          解答:解:(1)由題意可知
          2-2x+x2>0
          1+x
          1-x
          ≥0
          ,解得-1≤x<1,
          所以函數(shù)的定義域為M=[-1,1);
          (2)g(x)=
          ax
          x-1
          =a+
          a
          x-1
          ,
          當(dāng)a>0時,g(x)在區(qū)間[2,4]上單調(diào)遞減,
          ∴g(4)≤g(x)≤g(2)
          4a
          3
          ≤g(x)≤2a
          ,所以N∈[
          4a
          3
          ,2a
          ],又因為M∩N≠∅,可得0<a<
          3
          4
          ,
          當(dāng)a<0時,g(x) 區(qū)間[2,4]上是增函數(shù),所以g(2)≤g(x)≤g(4).
          4a
          3
          ≥g(x)≥2a
          ,所以N=[2a,
          4a
          3
          ].
          又因為M∩N≠∅,可得-
          3
          4
          ≤a<0

          綜上實數(shù)a的取值范圍{a|-
          3
          4
          ≤a<0
          或0<a<
          3
          4
          }.
          點評:本題考查函數(shù)的定義域的求法,函數(shù)的值域的求法,函數(shù)的單調(diào)性的應(yīng)用,分類討論思想的應(yīng)用,考查計算能力轉(zhuǎn)化思想.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)、已知函數(shù)f(x)=
          1+
          2
          cos(2x-
          π
          4
          )
          sin(x+
          π
          2
          )
          .若角α在第一象限且cosα=
          3
          5
          ,求f(α)

          (2)函數(shù)f(x)=2cos2x-2
          3
          sinxcosx
          的圖象按向量
          m
          =(
          π
          6
          ,-1)
          平移后,得到一個函數(shù)g(x)的圖象,求g(x)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=(1-
          a
          x
          )ex
          ,若同時滿足條件:
          ①?x0∈(0,+∞),x0為f(x)的一個極大值點;
          ②?x∈(8,+∞),f(x)>0.
          則實數(shù)a的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          1+lnx
          x

          (1)如果a>0,函數(shù)在區(qū)間(a,a+
          1
          2
          )
          上存在極值,求實數(shù)a的取值范圍;
          (2)當(dāng)x≥1時,不等式f(x)≥
          k
          x+1
          恒成立,求實數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          1+
          1
          x
          ,(x>1)
          x2+1,(-1≤x≤1)
          2x+3,(x<-1)

          (1)求f(
          1
          2
          -1
          )
          與f(f(1))的值;
          (2)若f(a)=
          3
          2
          ,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          定義在D上的函數(shù)f(x)如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=
          1-m•2x1+m•2x

          (1)m=1時,求函數(shù)f(x)在(-∞,0)上的值域,并判斷f(x)在(-∞,0)上是否為有界函數(shù),請說明理由;
          (2)若函數(shù)f(x)在[0,1]上是以3為上界的有界函數(shù),求m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案