【題目】某石化集團(tuán)獲得了某地深海油田區(qū)塊的開采權(quán).集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分幾口井.取得了地質(zhì)資料,進(jìn)入全面勘探時(shí)期后.集團(tuán)按網(wǎng)絡(luò)點(diǎn)來(lái)布置井位進(jìn)行全面勘探.由于勘探一口井的費(fèi)用很高.如果新設(shè)計(jì)的井位與原有井位重合或接近.便利用舊并的地質(zhì)資料.不必打這日新并,以節(jié)約勘探費(fèi)與用,勘探初期數(shù)據(jù)資料見如表:
井號(hào) | ||||||
坐標(biāo) | ||||||
鉆探深度 | ||||||
出油量 |
(參考公式和計(jì)算結(jié)果:,
,
,
).
()
號(hào)舊井位置線性分布,借助前
組數(shù)據(jù)求得回歸直線方程為
,求
的值.
()現(xiàn)準(zhǔn)備勘探新井
,若通過
,
,
,
號(hào)井計(jì)算出的
,
的值(
,
精確到
)相比于(
)中的
,
,值之差不超過
.則使用位置最接近的已有舊井
.否則在新位置打開,請(qǐng)判斷可否使用舊井?
()設(shè)出油量與勘探深度的比值
不低于
的勘探井稱為優(yōu)質(zhì)井,那么在原有
口井中任意勘探
口井,求勘探優(yōu)質(zhì)井?dāng)?shù)
的分布列與數(shù)學(xué)期望.
【答案】(1);(2)使用位置最接近的已有舊井
;(3)見解析.
【解析】試題分析:(1)計(jì)算、
,求出回歸系數(shù)
,寫出回歸直線方程;
(2)計(jì)算、
,求出回歸系數(shù),計(jì)算
,
的值(
,
精確到
)相比于(
)中的
,
,值之差,即可得出結(jié)論;
(3)用列舉法求基本事件數(shù),計(jì)算對(duì)應(yīng)的概率值.
試題解析;
①利用前組數(shù)據(jù)得到
,
.
∵,
∴,∴回歸直線方程為
.
當(dāng)時(shí),
,∴
的預(yù)報(bào)值為
.
② ∵,
,
,
.
∴,
∴,即
,
,
,
.
,
,均不超過
.
∴使用位置最接近的已有舊井.
③由題意,,
,
,
這
口井是優(yōu)質(zhì)井,
,
這兩口井是非優(yōu)質(zhì)井,
∴勘察優(yōu)質(zhì)井?dāng)?shù)的可能取值為
,
,
.
,可得
,
,
.∴
的分布列為:
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2018四川南充市高三第二次(3月)高考適應(yīng)性考試】已知橢圓的離心率為
,點(diǎn)
在橢圓
上.
(I)求橢圓的方程;
(II)直線平行于
為坐標(biāo)原點(diǎn)),且與橢圓
交于
兩個(gè)不同的點(diǎn),若
為鈍角,求直線
在
軸上的截距
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(其中
為參數(shù)),曲線
.以原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線、
的極坐標(biāo)方程;
(2)射線與曲線
、
分別交于點(diǎn)
(且
均異于原點(diǎn)
)當(dāng)
時(shí),求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線的參數(shù)方程為
(
為參數(shù)).以平面直角坐標(biāo)系
的原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,設(shè)直線
的極坐標(biāo)方程為
.
(1)求曲線和直線
的普通方程;
(2)設(shè)為曲線
上任意一點(diǎn),求點(diǎn)
到直線
的距離的最值.
【答案】(1),
;(2)最大值為
,最小值為
【解析】試題分析:(1)根據(jù)參數(shù)方程和極坐標(biāo)化普通方程化法即易得結(jié)論的普通方程為
;直線
的普通方程為
.(2)求點(diǎn)到線距離問題可借助參數(shù)方程,利用三角函數(shù)最值法求解即可故設(shè)
,
.即可得出最值
解析:(1)根據(jù)題意,由,得
,
,
由,得
,
故的普通方程為
;
由及
,
得
,
故直線的普通方程為
.
(2)由于為曲線
上任意一點(diǎn),設(shè)
,
由點(diǎn)到直線的距離公式得,點(diǎn)到直線
的距離為
.
∵
,
∴
,即
,
故點(diǎn)到直線
的距離的最大值為
,最小值為
.
點(diǎn)睛:首先要熟悉參數(shù)方程和極坐標(biāo)方程化普通方程的方法,第一問基本屬于送分題所以務(wù)必抓住,對(duì)于第二問可以總結(jié)為一類題型,借助參數(shù)方程設(shè)點(diǎn)的方便轉(zhuǎn)化為三角函數(shù)最值問題求解
【題型】解答題
【結(jié)束】
23
【題目】已知函數(shù),
.
(1)解關(guān)于的不等式
;
(2)若函數(shù)的圖象恒在函數(shù)
圖象的上方,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)政府實(shí)施“互聯(lián)網(wǎng)+”戰(zhàn)略以來(lái),手機(jī)作為客戶端越來(lái)越為人們所青睞,通過手機(jī)實(shí)現(xiàn)衣食住行消費(fèi)已經(jīng)成為一種主要的消費(fèi)方式,“一機(jī)在手,走遍天下”的時(shí)代已經(jīng)到來(lái)。在某著名的夜市,隨機(jī)調(diào)查了100名顧客購(gòu)物時(shí)使用手機(jī)支付的情況,得到如下的列聯(lián)表,已知其中從使用手機(jī)支付的人群中隨機(jī)抽取1人,抽到青年的概率為
.
(1)根據(jù)已知條件完成列聯(lián)表,并根據(jù)此資料判斷是否有
的把握認(rèn)為“市場(chǎng)購(gòu)物用手機(jī)支付與年齡有關(guān)”?
(2)現(xiàn)采用分層抽樣從這100名顧客中按照“使用手機(jī)支付”和“不使用手機(jī)支付”中抽取得到一個(gè)容量為5的樣本,設(shè)事件為“從這個(gè)樣本中任選2人,這2人中至少有1人是不使用手機(jī)支付的”,求事件
發(fā)生的概率?
列聯(lián)表
青年 | 中老年 | 合計(jì) | |
使用手機(jī)支付 | 60 | ||
不使用手機(jī)支付 | 24 | ||
合計(jì) | 100 |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)
,
,動(dòng)點(diǎn)
不在
軸上,直線
、
的斜率之積
.
(Ⅰ)求動(dòng)點(diǎn)的軌跡方程;
(Ⅱ)經(jīng)過點(diǎn)的兩直線與動(dòng)點(diǎn)
的軌跡分別相交于
、
兩點(diǎn)。是否存在常數(shù)
,使得任意滿足
的直線
恒過線段
的中點(diǎn)?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,3),直線l:y=2x-4.設(shè)圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=x-1上,過點(diǎn)A作圓C的切線,求切線的方程;
(2)若圓C上存在點(diǎn)M,使MA=2MO,求圓心C的橫坐標(biāo)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是拋物線
的焦點(diǎn),
關(guān)于
軸的對(duì)稱點(diǎn)為
,曲線
上任意一點(diǎn)
滿足;直線
和直線
的斜率之積為
.
(1)求曲線的方程;
(2)過且斜率為正數(shù)的直線
與拋物線交于
兩點(diǎn),其中點(diǎn)
在
軸上方,與曲線
交于點(diǎn)
,若
的面積為
的面積為
,當(dāng)時(shí)
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,如果輸入的t=0.01,則輸出的n=( )
A. 5 B. 6 C. 7 D. 8
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com