日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 某港口O要將一件重要物品用小艇送到一艘正在航行的輪船上,在小艇出發(fā)時(shí),輪船位于港口O北偏西30°且與該港口相距20海里的A處,并正以30海里/小時(shí)的航行速度沿正東方向勻速行駛.假設(shè)該小艇沿直線方向以v海里/小時(shí)的航行速度勻速行駛,經(jīng)過t小時(shí)與輪船相遇.
          (Ⅰ)若希望相遇時(shí)小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?
          (Ⅱ)為保證小艇在30分鐘內(nèi)(含30分鐘)能與輪船相遇,試確定小艇航行速度的最小值;
          (Ⅲ)是否存在v,使得小艇以v海里/小時(shí)的航行速度行駛,總能有兩種不同的航行方向與輪船相遇?若存在,試確定v的取值范圍;若不存在,請(qǐng)說明理由.
          分析:(1)先假設(shè)相遇時(shí)小艇的航行距離為S,根據(jù)余弦定理可得到關(guān)系式S=
          900t2+400-2•30t•20•cos(90°-30°)
          整理后運(yùn)用二次函數(shù)的性質(zhì)可確定答案.
          (2)先假設(shè)小艇與輪船在某處相遇,根據(jù)余弦定理可得到(vt)2=202+(30t)2-2•20•30t•cos(90°-30°),再由t的范圍可求得v的最小值.
          (3)根據(jù)(2)中v與t的關(guān)系式,設(shè)
          1
          t
          =u
          然后代入關(guān)系式整理成400u2-600u+900-v2=0,將問題等價(jià)于方程有兩個(gè)不等正根的問題,進(jìn)而得解.
          解答:解:(1)設(shè)相遇時(shí)小艇的航行距離為S海里,則
          S=
          900t2+400-2•30t•20•cos(90°-30°)

          =
          900t2-600t+400
          =
          900(t-
          1
          3
          )
          2
          +300

          故當(dāng)t=
          1
          3
          時(shí),Smin=10
          3
          ,v=
          10
          3
          1
          3
          =30
          3

          即小艇以30
          3
          海里/小時(shí)的速度航行,相遇時(shí)小艇的航行距離最。
          (2)設(shè)小艇與輪船在某處相遇
          由題意可得:(vt)2=202+(30t)2-2•20•30t•cos(90°-30°)
          化簡(jiǎn)得:v2=
          400
          t2
          -
          600
          t
          +900
          =400(
          1
          t
          -
          3
          4
          )
          2
          +675

          由于0<t
          1
          2
          ,即
          1
          t
          ≥2

          所以當(dāng)
          1
          t
          =2
          時(shí),v取得最小值10
          13

          即小艇航行速度的最小值為10
          13
          海里/小時(shí)
          (3)由(2)知:v2=
          400
          t2
          -
          600
          t
          +900
          ,設(shè)
          1
          t
          =u
          (u>0)
          于是400u2-600u+900-v2=0①
          小艇總能有兩種不同的航行方向與輪船相遇,等價(jià)于方程①應(yīng)有兩個(gè)不等正根,即
          6002-1600(900-v2)>0
          900-v2>0
          ,解得15
          3
          <v<30
          所以,v 的取值范圍是(15
          3
          ,30)
          點(diǎn)評(píng):本題主要考查解三角形、二次函數(shù)等基礎(chǔ)知識(shí),考查推理論證能力,抽象概括能力、運(yùn)算求解能力、應(yīng)用意識(shí),考查函數(shù)與方程思想、數(shù)形結(jié)合思想、化歸思想.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          某港口O要將一件重要物品用小艇送到一艘正在航行的輪船上.在小艇出發(fā)時(shí),輪船位于港口O北偏西30°且與該港口相距20海里的A處,并以30海里/小時(shí)的航行速度沿正東方向勻速行駛.假設(shè)該小船沿直線方向以v海里/小時(shí)的航行速度勻速行駛,經(jīng)過t小時(shí)與輪船相遇.
          (1)若希望相遇時(shí)小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?
          (2)假設(shè)小艇的最高航行速度只能達(dá)到30海里/小時(shí),試設(shè)計(jì)航行方案(即確定航行方向與航行速度的大。,使得小艇能以最短時(shí)間與輪船相遇,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          某港口O要將一件重要物品用小艇送到一艘正在航行的輪船上,在小艇出發(fā)時(shí),輪船位于港口O北偏西30°且與該港口相距20海里的A處,并正以30海里/小時(shí)的航行速度沿正東方向勻速行駛.假設(shè)該小艇沿直線方向以v海里/小時(shí)的航行速度勻速行駛,經(jīng)過t小時(shí)與輪船相遇.
          (Ⅰ)若希望相遇時(shí)小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?
          (Ⅱ)為保證小艇在30分鐘內(nèi)(含30分鐘)能與輪船相遇,試確定小艇航行速度的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014屆福建省高二上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

          (本小題滿分12分)

          某港口O要將一件重要物品用小艇送到一艘正在航行的輪船上,在小艇出發(fā)時(shí),輪船位于港口的O北偏西30°且與該港口相距20海里的A處,并正以30海里/小時(shí)的航行速度沿正東方向勻速行駛. 假設(shè)該小艇沿直線方向以v海里/小時(shí)的航行速度勻速行駛,經(jīng)過t小時(shí)與輪船相遇.

          (Ⅰ)若希望相遇時(shí)小艇的航行距離最小,則小艇航行時(shí)間應(yīng)為多少小時(shí)?

          (Ⅱ)為保證小艇在30分鐘內(nèi)(含30分鐘)能與輪船相遇,試確定小艇航行速度的最小值;

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省福州市高三第五次質(zhì)量檢查數(shù)學(xué)文卷 題型:解答題

          (本小題滿分12分)

          某港口O要將一件重要物品用小艇送到一艘正在航行的輪船上,在小艇出發(fā)時(shí),輪船位于港口O北偏西30°且與該港口相距20海里的處,并正以30海里/小時(shí)的航行速度沿正東方向勻速行駛。假設(shè)該小艇沿直線方向以海里/小時(shí)的航行速度勻速行駛,經(jīng)過小時(shí)與輪船相遇。

          (Ⅰ)若希望相遇時(shí)小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?

          (Ⅱ)為保證小艇在30分鐘內(nèi)(含30分鐘)能與輪船相遇,試確定小艇航行速度的最小值;

           

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案