日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知fx)是定義域?yàn)?/span>R的偶函數(shù),f(-1)=3,且當(dāng)x≥0時(shí),fx)=2x+x+cc是常數(shù)),則不等式fx-1)<6的解集是( 。

          A. B. C. D.

          【答案】D

          【解析】

          根據(jù)題意,由偶函數(shù)的性質(zhì)可得f(1)=f(-1)=3,即f(1)=21+1+c=3,則c=0,即可得當(dāng)x≥0時(shí),f(x)=2x+x,據(jù)此分析可得f(2)=22+2=6,且f(x)在[0,+∞)上為增函數(shù);進(jìn)而可得f(x-1)<6f(|x-1|)<f(2)|x-1|<2,解可得x的取值范圍,即可得答案.

          解:根據(jù)題意,f(x)是定義域?yàn)镽的偶函數(shù),且f(-1)=3,

          則f(1)=f(-1)=3,即f(1)=21+1+c=3,則c=0,

          故當(dāng)x≥0時(shí),f(x)=2x+x,有f(2)=22+2=6,且f(x)在[0,+∞)上為增函數(shù),

          則f(x-1)<6f(|x-1|)<f(2)|x-1|<2,

          解可得:-1<x<3,

          即不等式的解集為(-1,3);

          故選:D.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知二項(xiàng)式 的展開式.

          (1)求展開式中含項(xiàng)的系數(shù);

          (2)如果第項(xiàng)和第項(xiàng)的二項(xiàng)式系數(shù)相等,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知A是橢圓E: =1的左頂點(diǎn),斜率為k(k>0)的直線交E與A,M兩點(diǎn),點(diǎn)N在E上,MA⊥NA.
          (1)當(dāng)|AM|=|AN|時(shí),求△AMN的面積
          (2)當(dāng)2|AM|=|AN|時(shí),證明: <k<2.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)f(x)=x2+bx+c,若對(duì)任意的x1,x2∈[-1,1],有|f(x1)-f(x2)|≤6,則b的取值范圍是( 。

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).
          (1)證明MN∥平面PAB;
          (2)求四面體N﹣BCM的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)(其中a為常數(shù)).

          (1)當(dāng)a=1時(shí),求fx)在上的值域;

          (2)若當(dāng)x∈[0,1]時(shí),不等式恒成立,求實(shí)數(shù)a的取值范圍;

          (3)設(shè),是否存在正數(shù)a,使得對(duì)于區(qū)間上的任意三個(gè)實(shí)數(shù)m,np,都存在以fgm)),fgn)),fgp))為邊長的三角形?若存在,試求出這樣的a的取值范圍;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)fx)=x3ax2bx+1的導(dǎo)數(shù)滿足,其中常數(shù)a,bR.

          (1)求曲線yfx)在點(diǎn)(1,f(1))處的切線方程;

          (2)設(shè),求函數(shù)gx)的極值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知平面向量、滿足,

          (1),試求的夾角的余弦值

          (2)若對(duì)一切實(shí)數(shù),恒成立,求的夾角

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=x3+ax2+bx+c.
          (1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
          (2)設(shè)a=b=4,若函數(shù)f(x)有三個(gè)不同零點(diǎn),求c的取值范圍;
          (3)求證:a2﹣3b>0是f(x)有三個(gè)不同零點(diǎn)的必要而不充分條件.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案