日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知f(x)=x2-(a+
          1
          a
          )x+1

          (Ⅰ)當(dāng)a=
          1
          2
          時(shí),解不等式f(x)≤0;
          (Ⅱ)若a>0,解關(guān)于x的不等式f(x)≤0.
          分析:(I)將a的值代入不等式,利用二次不等式與二次方程根的關(guān)系寫出不等式的解集.
          (II)通過對(duì)A的討論,判斷出相應(yīng)的二次方程的兩個(gè)根的大小關(guān)系,寫出二次不等式的解集.
          解答:解:(I)當(dāng)a=
          1
          2
          時(shí),有不等式f(x)=x2-
          3
          2
          x+1≤0

          (x-
          1
          2
          )(x-2)≤0
          ,
          ∴不等式的解為:x∈{x|
          1
          2
          ≤x≤2}

          (II)∵不等式f(x)=(x-
          1
          a
          )(x-a)≤0

          當(dāng)0<a<1時(shí),有
          1
          a
          >a
          ,∴不等式的解集為{x|a≤x≤
          1
          a
          }
          ;
          當(dāng)a>1時(shí),有
          1
          a
          <a
          ,∴不等式的解集為{x|
          1
          a
          ≤x≤a}
          ;
          當(dāng)a=1時(shí),不等式的解為x=1.
          點(diǎn)評(píng):求一元二次不等式的解集時(shí),若不等式中含參數(shù),一般需要討論,討論的起點(diǎn)常從以下幾方面考慮:二次項(xiàng)系數(shù)的符號(hào)、判別式的符號(hào)、兩個(gè)根的大小
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=
          x2(x>0)
          e(x=0)
          0(x<0)
          ,則f{f[f(-2)]}=( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=
          x2,x>0
          f(x+1),x≤0
          則f(2)+f(-1)
          =( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若函數(shù)f(x)對(duì)定義域中任意x,均滿足f(x)+f(2a-x)=2b,則稱函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(a,b)對(duì)稱;
          (1)已知f(x)=
          x2-mx+1x
          的圖象關(guān)于點(diǎn)(0,1)對(duì)稱,求實(shí)數(shù)m的值;
          (2)已知函數(shù)g(x)在(-∞,0)∪(0,+∞)上的圖象關(guān)于點(diǎn)(0,1)對(duì)稱,且當(dāng)x∈(0,+∞)時(shí),g(x)=-2x-n(x-1),求函數(shù)g(x)在x∈(-∞,0)上的解析式;
          (3)在(1)(2)的條件下,若對(duì)實(shí)數(shù)x<0及t>0,恒有g(shù)(x)+tf(t)>0,求正實(shí)數(shù)n的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=x2,g(x)=(
          1
          2
          )x-m
          ,若對(duì)任意x1∈[0,2],存在x2∈[1,2],使得f(x1)≥g(x2),則實(shí)數(shù)m的取值范圍是
          m
          1
          4
          m
          1
          4

          查看答案和解析>>

          同步練習(xí)冊(cè)答案