【題目】正方體的棱長(zhǎng)為2,E,F,G分別為
,
,
的中點(diǎn),則( )
A.直線與直線
垂直
B.直線與平面
不平行
C.平面截正方體所得的截面面積為
D.點(diǎn)C與點(diǎn)G到平面的距離相等
【答案】C
【解析】
根據(jù)條件對(duì)選項(xiàng)進(jìn)行逐一分析, A.若有,則能得到
平面
,進(jìn)一步得到
,顯然不成立,可判斷. B.取
的中點(diǎn)Q,連接
,
,可得平面
平面
,從而可判斷. C.連接
,
,延長(zhǎng)
,
交于點(diǎn)S,由條件可得
,截面即為梯形
,再計(jì)算其面積. D.用等體積法分別求出點(diǎn)C和點(diǎn)G到平面
的距離,從而判斷.
A.若,
又因?yàn)?/span>且
,所以
平面
,
所以,所以
,顯然不成立,故結(jié)論錯(cuò)誤;
B.如圖所示,取的中點(diǎn)Q,連接
,
,
由條件可知:,
,且
,
,
所以平面平面
,
又因?yàn)?/span>平面
,所以
平面
,故結(jié)論不正確;
C.如圖所示,連接,
,延長(zhǎng)
,
交于點(diǎn)S,
因?yàn)?/span>E,F為,
的中點(diǎn),所以
,所以A,E,F,
四點(diǎn)共面,
所以,截面即為梯形
又因?yàn)?/span>,
,
所以,所以
,故結(jié)論正確;
D.記點(diǎn)C與點(diǎn)G到平面的距離分別為
,
,
因?yàn)?/span>.
又因?yàn)?/span>,
所以,故結(jié)論錯(cuò)誤.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
Ⅰ
當(dāng)
時(shí),
取得極值,求
的值并判斷
是極大值點(diǎn)還是極小值點(diǎn);
Ⅱ
當(dāng)函數(shù)
有兩個(gè)極值點(diǎn)
,
,且
時(shí),總有
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某蔬菜批發(fā)商經(jīng)銷(xiāo)某種新鮮蔬菜(以下簡(jiǎn)稱(chēng)蔬菜),購(gòu)入價(jià)為200元/袋,并以300元/袋的價(jià)格售出,若前8小時(shí)內(nèi)所購(gòu)進(jìn)的
蔬菜沒(méi)有售完,則批發(fā)商將沒(méi)售完的
蔬菜以150元/袋的價(jià)格低價(jià)處理完畢(根據(jù)經(jīng)驗(yàn),2小時(shí)內(nèi)完全能夠把
蔬菜低價(jià)處理完,且當(dāng)天不再購(gòu)進(jìn)).該蔬菜批發(fā)商根據(jù)往年的銷(xiāo)量,統(tǒng)計(jì)了100天
蔬菜在每天的前8小時(shí)內(nèi)的銷(xiāo)售量,制成如下頻數(shù)分布條形圖.
(1)若某天該蔬菜批發(fā)商共購(gòu)入6袋蔬菜,有4袋
蔬菜在前8小時(shí)內(nèi)分別被4名顧客購(gòu)買(mǎi),剩下2袋在8小時(shí)后被另2名顧客購(gòu)買(mǎi).現(xiàn)從這6名顧客中隨機(jī)選2人進(jìn)行服務(wù)回訪,則至少選中1人是以150元/袋的價(jià)格購(gòu)買(mǎi)的概率是多少?
(2)以上述樣本數(shù)據(jù)作為決策的依據(jù).
(i)若今年蔬菜上市的100天內(nèi),該蔬菜批發(fā)商堅(jiān)持每天購(gòu)進(jìn)6袋
蔬菜,試估計(jì)該蔬菜批發(fā)商經(jīng)銷(xiāo)
蔬菜的總盈利值;
(ii)若明年該蔬菜批發(fā)商每天購(gòu)進(jìn)蔬菜的袋數(shù)相同,試幫其設(shè)計(jì)明年的
蔬菜的進(jìn)貨方案,使其所獲取的平均利潤(rùn)最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】石嘴山市第三中學(xué)高三年級(jí)統(tǒng)計(jì)學(xué)生的最近20次數(shù)學(xué)周測(cè)成績(jī)(滿(mǎn)分150分),現(xiàn)有甲乙兩位同學(xué)的20次成績(jī)?nèi)缜o葉圖所示:
(1)根據(jù)莖葉圖求甲乙兩位同學(xué)成績(jī)的中位數(shù),并將同學(xué)乙的成績(jī)的頻率分布直方圖填充完整;
(2)根據(jù)莖葉圖比較甲乙兩位同學(xué)數(shù)學(xué)成績(jī)的平均值及穩(wěn)定程度(不要求計(jì)算出具體值,給出結(jié)論即可);
(3)現(xiàn)從甲乙兩位同學(xué)的不低于140分的成績(jī)中任意選出2個(gè)成績(jī),記事件為“其中2個(gè)成績(jī)分別屬于不同的同學(xué)”,求事件
發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在等腰梯形中,
,
,
,點(diǎn)
為
的中點(diǎn).將
沿
折起,使點(diǎn)
到達(dá)
的位置,得到如圖所示的四棱錐
,點(diǎn)
為棱
的中點(diǎn).
(1)求證:平面
;
(2)若平面平面
,求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方體的棱長(zhǎng)為2,
平面
.平面
截此正方體所得的截面有以下四個(gè)結(jié)論:
①截面形狀可能是正三角形②截面的形狀可能是正方形
③截面形狀可能是正五邊形④截面面積最大值為
則正確結(jié)論的編號(hào)是( )
A.①④B.①③C.②③D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月4日的每天晝夜溫度與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 |
溫差 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 26 | 32 | 26 | 17 |
根據(jù)表中12月1日至12月3日的數(shù)據(jù),求得線性回歸方程中的
,則求得的
_____;若用12月4日的數(shù)據(jù)進(jìn)行檢驗(yàn),檢驗(yàn)方法如下:先用求得的線性回歸方程計(jì)算發(fā)芽數(shù)
,再求
與實(shí)際發(fā)芽數(shù)
的差,若差值的絕對(duì)值不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,則求得的線性回歸方程_____(填“可靠”或“不可靠”).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的參數(shù)方程為
(
為參數(shù)),直線
經(jīng)過(guò)點(diǎn)
且傾斜角為
.
(1)求曲線的極坐標(biāo)方程和直線
的參數(shù)方程;
(2)已知直線與曲線
交于
,滿(mǎn)足
為
的中點(diǎn),求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知圓經(jīng)過(guò)橢圓
的左右焦點(diǎn)
,與橢圓
在第一象限的交點(diǎn)為
,且
,
,
三點(diǎn)共線.
(1)求橢圓的方程;
(2)設(shè)與直線(
為原點(diǎn))平行的直線交橢圓
于
兩點(diǎn),當(dāng)
的面積取取最大值時(shí),求直線
的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com