日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如下表

          廣告費用x(萬元)

          4

          2

          3

          5

          銷售額y(萬元)

          49

          26

          39

          54

          根據(jù)上表可得回歸方程 = x+ 為9.4,據(jù)此模型預報廣告費用為6萬元時銷售額為( )
          A.63.6萬元
          B.65.5萬元
          C.67.7萬元
          D.72.0萬元

          【答案】B
          【解析】解:∵ =3.5,
          =42,
          ∵數(shù)據(jù)的樣本中心點在線性回歸直線上,
          回歸方程 = x+ 中的 為9.4,
          ∴42=9.4×3.5+a,
          =9.1,
          ∴線性回歸方程是y=9.4x+9.1,
          ∴廣告費用為6萬元時銷售額為9.4×6+9.1=65.5,
          故選:B.
          首先求出所給數(shù)據(jù)的平均數(shù),得到樣本中心點,根據(jù)線性回歸直線過樣本中心點,求出方程中的一個系數(shù),得到線性回歸方程,把自變量為6代入,預報出結(jié)果.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】設m,n∈N,f(x)=(1+x)m+(1+x)n
          (1)當m=n=5時,若 ,求a0+a2+a4的值;
          (2)f(x)展開式中x的系數(shù)是9,當m,n變化時,求x2系數(shù)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,定義在[﹣1,2]上的函數(shù)f(x)的圖象為折線段ACB,

          (1)求函數(shù)f(x)的解析式;
          (2)請用數(shù)形結(jié)合的方法求不等式f(x)≥log2(x+1)的解集,不需要證明.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)在點處的切線方程為 (其中為常數(shù)).

          (1)求函數(shù)的解析式;

          (2)若對任意,不等式恒成立,求實數(shù)的取值范圍;

          (3)當時,求證: (其中e為自然對數(shù)的底數(shù)).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知某扇形的面積為4cm2 , 周長為8cm,則此扇形圓心角的弧度數(shù)是;若點(a,9)在函數(shù)y=3x的圖象上,則不等式 的解集為

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知定義在區(qū)間(﹣1,1)上的函數(shù)f(x)= 是奇函數(shù),且f( )= ,
          (1)確定f(x)的解析式;
          (2)判斷f(x)的單調(diào)性并用定義證明;
          (3)解不等式f(t﹣1)+f(t)<0.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】,,是橢圓)的四個頂點,四邊形是圓的外切平行四邊形,其面積為.橢圓的內(nèi)接的重心(三條中線的交點)為坐標原點.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)的面積是否為定值?若是,求出該定值,若不是,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知設函數(shù)f(x)=loga(1+2x)﹣loga(1﹣2x)(a>0,a≠1).
          (1)求f(x)的定義域;
          (2)判斷f(x)的奇偶性并證明;
          (3)求使f(x)>0的x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】(本題滿分12分)已知橢圓C的離心率為, 是橢圓的兩個焦點, 是橢圓上任意一點,且的周長是

          1)求橢圓C的方程;

          2)設圓T,過橢圓的上頂點作圓T的兩條切線交橢圓于E、F兩點,當圓心在軸上移動且時,求EF的斜率的取值范圍.

          查看答案和解析>>

          同步練習冊答案