日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)橢圓的兩個焦點是F1(-c,0)和F2(c,0)(c>0),且橢圓C上的點到焦點F2的最短距離為
          (1)求橢圓的方程;
          (2)若直線l:y=kx+m(k≠0)與橢圓C交于不同的兩點M、N,線段MN垂直平分線恒過點A(0,-1),求實數(shù)m的取值范圍.
          【答案】分析:(1)求出設(shè)橢圓上的點P(x,y)到焦點F2的距離dmin=a-c,利用條件即幾何量的關(guān)系,即可求得橢圓的方程;
          (2)由得(3k2+1)x2+6mkx+3(m2-1)=0,根據(jù)直線l:y=kx+m(k≠0)與橢圓C交于不同的兩點M、N,可得m2<3k2+1①,根據(jù)線段MN垂直平分線恒過點A(0,-1),可得2m=3k2+1(k≠0)②,由①②,即可求得實數(shù)m的取值范圍.
          解答:解:(1)設(shè)橢圓上的點P(x,y)到焦點F2的距離為d


          ∴x=a時,dmin=a-c
          ,∴,∴b=1
          ∴橢圓的方程為
          (2)由得(3k2+1)x2+6mkx+3(m2-1)=0
          ∵直線l:y=kx+m(k≠0)與橢圓C交于不同的兩點M、N,
          ∴△>0,∴m2<3k2+1①
          設(shè)M(x1,y1),N(x2,y2),∴x1+x2=
          ∴MN的中點為B().
          ∵線段MN垂直平分線恒過點A(0,-1),
          ∴AQ⊥MN

          ∴2m=3k2+1(k≠0)②
          由①②得m2<2m,∴0<m<2
          由②得m>
          ∴實數(shù)m的取值范圍是
          點評:本題以橢圓的幾何性質(zhì)為載體,考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,聯(lián)立方程組是關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知點F1,F(xiàn)2為橢圓
          x2
          2
          +y2=1
          的兩個焦點,點O為坐標(biāo)原點,圓O是以F1,F(xiàn)2為直徑的圓,一條直線與圓O相切并與橢圓交于不同的兩點A,B.
          (1)設(shè)b=f(k),求f(k)的表達式;
          (2)若
          OA
          OB
          =
          2
          3
          ,求直線l的方程;
          (3)若
          OA
          OB
          =m,(
          2
          3
          ≤m≤
          3
          4
          )
          ,求三角形OAB面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          下列說法中,正確的有
           

          ①若點P(x0,y0)是拋物線y2=2px上一點,則該點到拋物線的焦點的距離是|PF|=x0+
          p
          2
          ;
          ②設(shè)F1、F2為雙曲線
          x2
          a2
          -
          y2
          b2
          =1的兩個焦點,P(x0,y0)為雙曲線上一動點,∠F1PF2=θ,則△PF1F2的面積為b2tan
          θ
          2

          ③設(shè)定圓O上有一動點A,圓O內(nèi)一定點M,AM的垂直平分線與半徑OA的交點為點P,則P的軌跡為一橢圓;
          ④設(shè)拋物線焦點到準(zhǔn)線的距離為p,過拋物線焦點F的直線交拋物線于A、B兩點,則
          1
          |AF|
          、
          1
          p
          、
          1
          |BF|
          成等差數(shù)列.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P.

          (1)試用a表示點P的坐標(biāo);

          (2)設(shè)AB是橢圓C1的兩個焦點,當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;

          (3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個. 設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省臺州中學(xué)高三(上)第二次統(tǒng)練數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          已知點F1,F(xiàn)2為橢圓的兩個焦點,點O為坐標(biāo)原點,圓O是以F1,F(xiàn)2為直徑的圓,一條直線與圓O相切并與橢圓交于不同的兩點A,B.
          (1)設(shè)b=f(k),求f(k)的表達式;
          (2)若,求直線l的方程;
          (3)若,求三角形OAB面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省臺州中學(xué)(上)第二次統(tǒng)練數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          已知點F1,F(xiàn)2為橢圓的兩個焦點,點O為坐標(biāo)原點,圓O是以F1,F(xiàn)2為直徑的圓,一條直線與圓O相切并與橢圓交于不同的兩點A,B.
          (1)設(shè)b=f(k),求f(k)的表達式;
          (2)若,求直線l的方程;
          (3)若,求三角形OAB面積的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案