日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=loga(1-x)+loga(x+3),其中0<a<1,記函數(shù)f(x)的定義域?yàn)镈.
          (1)求函數(shù)f(x)的定義域D;
          (2)若函數(shù)f(x)的最小值為-4,求a的值;
          (3)若對(duì)于D內(nèi)的任意實(shí)數(shù)x,不等式-x2+2mx-m2+2m<1恒成立,求實(shí)數(shù)m的取值范圍.
          分析:(1)根據(jù)使函數(shù)的解析式有意義的原則,構(gòu)造關(guān)于自變量x的不等式組,解得函數(shù)f(x)的定義域D;
          (2)利用對(duì)數(shù)的運(yùn)算性質(zhì),化簡函數(shù)的解析式,并根據(jù)二次函數(shù)的圖象和性質(zhì),可分析出函數(shù)f(x)的最小值為-4時(shí),a的值
          (3)若不等式-x2+2mx-m2+2m<1恒成立,即-x2+2mx-m2+2m的最大值小于1,結(jié)合二次函數(shù)的圖象和性質(zhì),分類討論后,可得實(shí)數(shù)m的取值范圍.
          解答:解:(1)要使函數(shù)有意義:
          則有
          1-x>0
          x+3>0
          ,解得-3<x<1
          ∴函數(shù)的定義域D為(-3,1)…(2分)
          (2)f(x)=loga(1-x)+loga(x+3)=loga(1-x)•(x+3)=loga[-(x+1)2+4],
          ∵x∈(-3,1)
          ∴0<-(x+1)2+4≤4
          ∵0<a<1
          ∴l(xiāng)oga[-(x+1)2+4]≥loga4,
          f(x)的最小值為loga4,
          ∴l(xiāng)oga4=-4,即a=
          2
          2

          (3)由題知-x2+2mx-m2+2m<1在x∈(-3,1)上恒成立,?x2-2mx+m2-2m+1>0在x∈(-3,1)上恒成立,…(8分)
          令g(x)=x2-2mx+m2-2m+1,x∈(-3,1),
          配方得g(x)=(x-m)2-2m+1,其對(duì)稱軸為x=m,
          ①當(dāng)m≤-3時(shí),g(x)在(-3,1)為增函數(shù),∴g(-3)=(-3-m)2-2m+1=m2+4m+10≥0,
          而m2+4m+10≥0對(duì)任意實(shí)數(shù)m恒成立,∴m≤-3.       …(10分)
          ②當(dāng)-3<m<1時(shí),函數(shù)g(x)在(-3,m)為減函數(shù),在(m,1)為增函數(shù),
          ∴g(m)=-2m+1>0,解得m<
          1
          2
          .∴-3<m<
          1
          2
          …(12分)
          ③當(dāng)m≥1時(shí),函數(shù)g(x)在(-3,1)為減函數(shù),∴g(1)=(1-m)2-2m+1=m2-4m+2≥0,
          解得m≥2+
          2
          或m≤2-
          2
          ,∴-3<m<
          1
          2
          …(14分)
          綜上可得,實(shí)數(shù)m的取值范圍是 (-∞,
          1
          2
          )∪[2+
          2
          ,+∞)    …(15分)
          點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)恒成立問題,函數(shù)的定義域及求法,函數(shù)的最值,熟練掌握二次函數(shù)的圖象和性質(zhì)是解答的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=2x-2+ae-x(a∈R)
          (1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
          (2)當(dāng)a=1時(shí),若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2+2|lnx-1|.
          (1)求函數(shù)y=f(x)的最小值;
          (2)證明:對(duì)任意x∈[1,+∞),lnx≥
          2(x-1)
          x+1
          恒成立;
          (3)對(duì)于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
          x1+x2
          2
          時(shí),又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時(shí),對(duì)于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
          1
          f(n)
          }的前n項(xiàng)和為Sn,則S2012的值為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=xlnx
          (Ⅰ)求函數(shù)f(x)的極值點(diǎn);
          (Ⅱ)若直線l過點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          3
          x
          a
          +
          3
          (a-1)
          x
          ,a≠0且a≠1.
          (1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
          (2)已知當(dāng)x>0時(shí),函數(shù)在(0,
          6
          )上單調(diào)遞減,在(
          6
          ,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
          (3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點(diǎn)的直線l,使得l為曲線C的對(duì)稱軸?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案