日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知cosα=
          1
          7
          ,cos(α-β)=
          13
          14
          ,且0<α<β<
          π
          2
          ,則β=
           
          分析:由α和β的范圍,求出β-α的范圍,然后由cosα和cos(α-β)的值,利用同角三角函數(shù)間的基本關(guān)系求出sinα和sin(β-α)的值,然后由β=(β-α)+α,利用兩角和的余弦函數(shù)公式化簡后,根據(jù)特殊角的三角函數(shù)值即可求出β的度數(shù).
          解答:解:由0<α<β<
          π
          2
          ,得到0<β-α<
          π
          2
          ,又cosα=
          1
          7
          ,cos(α-β)=cos(β-α)=
          13
          14
          ,
          所以sinα=
          1-(
          1
          7
          )
          2
          =
          4
          3
          7
          ,sin(β-α)=
          1-cos2(β-α)
          =
          3
          3
          14
          ,
          則cosβ=cos[(β-α)+α]
          =cos(β-α)cosα-sin(β-α)sinα
          =
          13
          14
          ×
          1
          7
          -
          3
          3
          14
          ×
          4
          3
          7
          =
          1
          2

          所以β=
          π
          3

          故答案為:
          π
          3
          點(diǎn)評:此題考查學(xué)生靈活運(yùn)用同角三角函數(shù)間的基本關(guān)系及兩角和的余弦函數(shù)公式化簡求值,是一道基礎(chǔ)題.做題時注意角度的變換.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)已知cosα=
          1
          7
          ,cos(α+β)=-
          11
          14
          ,且α,β∈(0,
          π
          2
          )
          ,求cosβ的值;
          (2)已知α為第二象限角,且sinα=
          2
          4
          ,求
          cos(
          π
          4
          -α)
          cos2α-sin(2α-π)+1
          的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知cosα=
          1
          7
          cos(α+β)=-
          11
          14
          ,α∈(0,
          π
          2
          )
          ,α+β∈(
          π
          2
          ,π)
          ,則β=
          π
          3
          π
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知cosα=
          1
          7
          ,cos(α-β)=
          12
          13
          .且0<β<α<
          π
          2

          (Ⅰ)求cos2α的值.
          (Ⅱ)求cosβ的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知cosα=
          1
          7
          ,cos(α-β)=
          13
          14
          ,且0<β<α<
          π
          2
          ,則cosβ=
          1
          2
          1
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知cosα=
          1
          7
          ,cos(α-β)=
          13
          14
          ,且0<β<α<
          π
          2

          (Ⅰ) 求
          cos(π+2α)tan(π-2α)sin(
          π
          2
          -2α)
          cos(
          π
          2
          +2α)
          的值;
          (Ⅱ)求cosβ及角β的值.

          查看答案和解析>>

          同步練習(xí)冊答案