日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在平面直角坐標(biāo)系中,已知圓的方程為,點(diǎn)的坐標(biāo)為.

          (1)求過(guò)點(diǎn)且與圓相切的直線方程;

          (2)過(guò)點(diǎn)任作一條直線與圓交于不同兩點(diǎn),,且圓軸正半軸于點(diǎn),求證:直線的斜率之和為定值.

          【答案】(1)(2)詳見解析

          【解析】

          (1)當(dāng)直線的斜率不存在時(shí),直線滿足題意,當(dāng)直線的斜率存在時(shí),設(shè)切線方程為,圓心到直線的距離等于半徑,列式子求解即可求出,即可得到切線方程;(2)設(shè)直線,代入圓的方程,可得到關(guān)于的一元二次方程,設(shè),,且,直線的斜率之和為,代入根與系數(shù)關(guān)系整理可得到所求定值。

          (1)當(dāng)直線的斜率不存在時(shí),顯然直線與圓相切

          當(dāng)直線的斜率存在時(shí),設(shè)切線方程為,

          圓心到直線的距離等于半徑,即,解得,切線方程為:,

          綜上,過(guò)點(diǎn)且與圓相切的直線的方程是

          (2)圓軸正半軸的交點(diǎn)為,依題意可得直線的斜率存在且不為0,設(shè)直線,代入圓,

          整理得:.

          設(shè),,且

          ,

          ∴直線的斜率之和為

          為定值.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知美國(guó)蘋果公司生產(chǎn)某款iPhone手機(jī)的年固定成本為40萬(wàn)美元,每生產(chǎn)1萬(wàn)只還需另投入16萬(wàn)美元.設(shè)蘋果公司一年內(nèi)共生產(chǎn)該款iPhone手機(jī)x萬(wàn)只并全部銷售完每萬(wàn)只的銷售收入為R(x)萬(wàn)美元,且R(x)=

          (1)寫出年利潤(rùn)W(萬(wàn)美元)關(guān)于年產(chǎn)量x(萬(wàn)只)的函數(shù)解析式;

          (2)當(dāng)年產(chǎn)量為多少萬(wàn)只時(shí),蘋果公司在該款iPhone手機(jī)的生產(chǎn)中所獲得的利潤(rùn)最大?并求出最大利潤(rùn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在直三棱柱中, , 的中點(diǎn).

          (1)求證: 平面;

          (2)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知點(diǎn)和直線,設(shè)圓的半徑為1,圓心在直線上.

          (Ⅰ)若圓心也在直線上,過(guò)點(diǎn)作圓的切線.

          (1)求圓的方程;(2)求切線的方程;

          (Ⅱ)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】日前,揚(yáng)州下達(dá)了2018年城市建設(shè)和環(huán)境提升重點(diǎn)工程項(xiàng)目計(jì)劃其中將對(duì)一塊以O為圓心,R(R為常數(shù),單位:米)為半徑的半圓形荒地進(jìn)行治理改造,如圖所示,△OBD區(qū)域用于兒童樂(lè)園出租,弓形BCD區(qū)域(陰影部分)種植草坪,其余區(qū)域用于種植觀賞植物.已知種植草坪和觀賞植物的成本分別是每平方米5元和55元,兒童樂(lè)園出租的利潤(rùn)是每平方米95元.

          (1)設(shè)∠BOD=θ(單位:弧度),用θ表示弓形BCD的面積S=f(θ);

          (2)如果市規(guī)劃局邀請(qǐng)你規(guī)劃這塊土地,如何設(shè)計(jì)∠BOD的大小才能使總利潤(rùn)最大?并求出該最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】數(shù)據(jù)顯示,某公司2018年上半年五個(gè)月的收入情況如下表所示:

          月份

          2

          3

          4

          5

          6

          月收入(萬(wàn)元)

          1.4

          2.56

          5.31

          11

          21.3

          根據(jù)上述數(shù)據(jù),在建立該公司2018年月收入(萬(wàn)元)與月份的函數(shù)模型時(shí),給出兩個(gè)函數(shù)模型供選擇.

          (1)你認(rèn)為哪個(gè)函數(shù)模型較好,并簡(jiǎn)單說(shuō)明理由;

          (2)試用你認(rèn)為較好的函數(shù)模型,分析大約從第幾個(gè)月份開始,該公司的月收入會(huì)超過(guò)100萬(wàn)元?(參考數(shù)據(jù),

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】對(duì)于定義在上的函數(shù),有下列四個(gè)命題:

          ①若是奇函數(shù),則的圖象關(guān)于點(diǎn)對(duì)稱;

          ②若對(duì),有,則的圖象關(guān)于直線對(duì)稱;

          ③若對(duì),有,則的圖象關(guān)于點(diǎn)對(duì)稱;

          ④函數(shù)與函數(shù)的圖像關(guān)于直線對(duì)稱.

          其中正確命題的序號(hào)為__________.(把你認(rèn)為正確命題的序號(hào)都填上)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知直線和圓.

          (1)求證:直線恒過(guò)一定點(diǎn);

          (2)試求當(dāng)為何值時(shí),直線被圓所截得的弦長(zhǎng)最短;

          (3)在(2)的前提下,直線是過(guò)點(diǎn),且與直線平行的直線,求圓心在直線上,且與圓相外切的動(dòng)圓中半徑最小圓的標(biāo)準(zhǔn)方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)是定義在正整數(shù)集上的函數(shù),且滿足:當(dāng)成立時(shí),總可推出

          成立,那么下列命題總成立的是( )

          A. 成立,則成立;

          B. 成立,則成立;

          C. 成立,則當(dāng)時(shí),均有成立;

          D. 成立,則當(dāng)時(shí),均有成立.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案