【題目】隨著網(wǎng)購(gòu)人數(shù)的日益增多,網(wǎng)上的支付方式也呈現(xiàn)一種多樣化的狀態(tài),越來(lái)越多的便捷移動(dòng)支付方式受到了人們的青睞,更被網(wǎng)友們?cè)u(píng)為“新四大發(fā)明”之一.隨著人們消費(fèi)觀念的進(jìn)步,許多人喜歡用信用卡購(gòu)物,考慮到這一點(diǎn),一種“網(wǎng)上的信用卡”橫空出世——螞蟻花唄.這是一款支付寶和螞蟻金融合作開(kāi)發(fā)的新支付方式,簡(jiǎn)單便捷,同時(shí)也滿(mǎn)足了部分網(wǎng)上消費(fèi)群體在支付寶余額不足時(shí)的“賒購(gòu)”消費(fèi)需求.為了調(diào)查使用螞蟻花唄“賒購(gòu)”消費(fèi)與消費(fèi)者年齡段的關(guān)系,某網(wǎng)站對(duì)其注冊(cè)用戶(hù)開(kāi)展抽樣調(diào)查,在每個(gè)年齡段的注冊(cè)用戶(hù)中各隨機(jī)抽取100人,得到各年齡段使用螞蟻花唄“賒購(gòu)”的人數(shù)百分比如圖所示.
(1)由大數(shù)據(jù)可知,在18到44歲之間使用花唄“賒購(gòu)”的人數(shù)百分比y與年齡x成線(xiàn)性相關(guān)關(guān)系,利用統(tǒng)計(jì)圖表中的數(shù)據(jù),以各年齡段的區(qū)間中點(diǎn)代表該年齡段的年齡,求所調(diào)查群體各年齡段“賒購(gòu)”人數(shù)百分比y與年齡x的線(xiàn)性回歸方程(回歸直線(xiàn)方程的斜率和截距保留兩位有效數(shù)字);
(2)該網(wǎng)站年齡為20歲的注冊(cè)用戶(hù)共有2000人,試估算該網(wǎng)站20歲的注冊(cè)用戶(hù)中使用花唄“賒購(gòu)”的人數(shù);
(3)已知該網(wǎng)店中年齡段在18-26歲和27-35歲的注冊(cè)用戶(hù)人數(shù)相同,現(xiàn)從18到35歲之間使用花唄“賒購(gòu)”的人群中按分層抽樣的方法隨機(jī)抽取8人,再?gòu)倪@8人中簡(jiǎn)單隨機(jī)抽取2人調(diào)查他們每個(gè)月使用花唄消費(fèi)的額度,求抽取的兩人年齡都在18到26歲的概率.
參考答案:,
.
【答案】(1);(2)1080人;(3)
.
【解析】
(1)根據(jù)公式計(jì)算出,
后可得
;
(2)將代入
得
,進(jìn)而可得
;
(3)根據(jù)分層抽樣可知隨機(jī)抽取8人,年齡在18到26歲之間有5人,年齡在27-35之間有3人,再根據(jù)古典概型的概率公式計(jì)算可得結(jié)果.
(1)由題意,,
,
所以,
,所求線(xiàn)性回歸方程為
.
(2)由(1)知,該網(wǎng)站20歲的注冊(cè)用戶(hù)中使用花唄“賒購(gòu)”的人數(shù)百分比為,而
,
所以估計(jì)該網(wǎng)站20歲的注冊(cè)用戶(hù)中使用花唄“賒購(gòu)”的人數(shù)為1080人.
(3)依題意,隨機(jī)抽取8人,年齡在18到26歲之間有5人,年齡在27-35之間有3人,所以抽取的兩人年齡都在18到26歲的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為
,左、右焦點(diǎn)分別為
、
,
為橢圓上異于長(zhǎng)軸端點(diǎn)的點(diǎn),且
的最大面積為
.
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)若直線(xiàn)是過(guò)點(diǎn)
點(diǎn)的直線(xiàn),且
與橢圓
交于不同的點(diǎn)
、
,是否存在直線(xiàn)
使得點(diǎn)
、
到直線(xiàn)
,的距離
、
,滿(mǎn)足
恒成立,若存在,求
的值,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有一塊廢棄的半圓形鋼板,其右下角一小部分因生銹無(wú)法使用,其形狀如圖所示,已知該鋼板的圓心為,線(xiàn)段
為其下沿,且
,
.現(xiàn)欲從中截取一個(gè)四邊形
,其要求如下:點(diǎn)
,
均在圓弧上,
平分
,且
,垂足
在邊
上.設(shè)
,四邊形
的面積為
.
(1)求關(guān)于
的函數(shù)解析式,并寫(xiě)出其定義域;
(2)當(dāng)為何值時(shí),四邊形
的面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四邊形ABCD與BDEF均為菱形,,且
.
求證:
平面BDEF;
求直線(xiàn)AD與平面ABF所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖四棱柱中,
,
,
,M為
的中點(diǎn).
(1)證明:平面
;
(2)若四邊形是菱形,且面
面
,
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的不等式
有且僅有兩個(gè)正整數(shù)解(其中e=2.71828… 為自然對(duì)數(shù)的底數(shù)),則實(shí)數(shù)
的取值范圍是( )
A. (,
] B. (
,
] C. [
,
) D. [
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,平面
底面
,
是等邊三角形,底面
是菱形,且
,
為棱
的中點(diǎn),
為菱形
的中心,下列結(jié)論正確的有( )
A.直線(xiàn)與平面
平行B.直線(xiàn)
與直線(xiàn)
垂直
C.線(xiàn)段與線(xiàn)段
長(zhǎng)度相等D.
與
所成角的余弦值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓
的右焦點(diǎn)為
,下頂點(diǎn)為P,過(guò)點(diǎn)
的動(dòng)直線(xiàn)l交橢圓C于A,B兩點(diǎn).
(1)當(dāng)直線(xiàn)l平行于x軸時(shí),P,F,A三點(diǎn)共線(xiàn),且,求橢圓C的方程;
(2)當(dāng)橢圓C的離心率為何值時(shí),對(duì)任意的動(dòng)直線(xiàn)l,總有?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com