日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)動(dòng)點(diǎn)在直線上,為坐標(biāo)原點(diǎn),以為直角邊,為直角頂點(diǎn)作等
          ,則動(dòng)點(diǎn)的軌跡是( )
          A.圓B.兩條平行直線C.拋物線D.雙曲線
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          給出下列三個(gè)命題
          ①若,則
          ②若正整數(shù)m和n滿足,則
          ③設(shè)為圓上任一點(diǎn),圓O2為圓心且半徑為1.當(dāng)時(shí),圓O1與圓O2相切
          其中假命題的個(gè)數(shù)為    (   )
          A.0 B.1 C.2D.3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (12分) 已知橢圓的離心率為,過右焦點(diǎn)F的直線相交于、兩點(diǎn),當(dāng)的斜率為1時(shí),坐標(biāo)原點(diǎn)的距離為
          (I)求,的值;
          (II)上是否存在點(diǎn)P,使得當(dāng)繞F轉(zhuǎn)到某一位置時(shí),有成立?
          若存在,求出所有的P的坐標(biāo)與的方程;若不存在,說明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知橢圓,則當(dāng)在此橢圓上存在不同兩點(diǎn)關(guān)于直線對(duì)稱時(shí)的取值范圍為(    )
          A.B.
          C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          雙曲線的離心率為,則的值是
          A.B.2C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分14分)
          在平面直角坐標(biāo)系中,已知橢圓過點(diǎn),且橢圓的離心率為
          (1)求橢圓的方程;
          (2)是否存在以為直角頂點(diǎn)且內(nèi)接于橢圓的等腰直角三角形?若存在,求出共有幾個(gè);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本題滿分10分)
          已知拋物線與直線相切于點(diǎn)A(1,1)。
          (1)求的解析式;
          (2)若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知?jiǎng)狱c(diǎn)A、B分別在圖中拋物線及橢圓
          的實(shí)線上運(yùn)動(dòng),若軸,點(diǎn)N的坐標(biāo)
          為(1,0),則三角形ABN的周長的取值范圍是 (    )
          A.    B.    C.    D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知雙曲線的方程為,過左焦點(diǎn)F1作斜率為的直線交雙曲線的右支于點(diǎn)P,且軸平分線段F1P,則雙曲線的離心率是           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案