日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,在直角梯形ABCD中,AD∥BC,DA⊥AB,AD=3,AB=4,BC=
          3
          ,點(diǎn)E在線段AB的延長線上.若曲線段DE(含兩端點(diǎn))為某曲線L上的一部分,且曲線L上任一點(diǎn)到A、B兩點(diǎn)的距離之和都相等.
          (1)建立恰當(dāng)?shù)闹苯亲鴺?biāo)系,求曲線L的方程;
          (2)根據(jù)曲線L的方程寫出曲線段DE(含兩端點(diǎn))的方程;
          (3)若點(diǎn)M為曲線段DE(含兩端點(diǎn))上的任一點(diǎn),試求|MC|+|MA|的最小值,并求出取得最小值時(shí)點(diǎn)M的坐標(biāo).
          分析:(1)由題意,先建立平面直角坐標(biāo)系,利用曲線的方程這一概念求其動(dòng)點(diǎn)的軌跡方程;
          (2)由題意知xD<x<xE,y≥0,而xD=xA=-2,xE=4,從而得出所求曲線段DE的方程,利用曲線的方程這一概念求其動(dòng)點(diǎn)的軌跡方程,要注意求解方程之后要有題意去排雜;
          (3)由橢圓的定義及點(diǎn)M為曲線段DE(含兩端點(diǎn))上的任一點(diǎn)可知|MA|+|MB|=2a=8,即|MA|=8-|MB|,則|MC|+|MA|=8+|MC|-|MB|≥8-|BC|=8-2
          3
          即可求得|MC|+|MA|有最小值.
          解答:解(1)如圖,以AB所在的直線為x軸,其垂直平分線為y軸,建立所示的直角坐標(biāo)系,
          A(-2,0),B(2,0),C(2,
          3
          ),D(-2,3)
          ,|DA|=3,|DB|=5.
          設(shè)動(dòng)點(diǎn)M(x,y)為曲線L上的任一點(diǎn),
          則|MA|+|MB|=|DA|+|DB|=8,精英家教網(wǎng)
          (x+2)2+y2
          +
          (x-2)2+y2
          =8

          整理得
          x2
          16
          +
          y2
          12
          =1
          ,為所求曲線L的方程
          (2)由題意知xD<x<xE,y≥0,
          而xD=xA=-2,xE=4
          則所求曲線段DE的方程為
          x2
          16
          +
          y2
          12
          =1(-2≤x≤4,y≥0)

          (3)由橢圓的定義及點(diǎn)M為曲線段DE(含兩端點(diǎn))上的任一點(diǎn)可知|MA|+|MB|=2a=8,即|MA|=8-|MB|,
          則|MC|+|MA|=8+|MC|-|MB|≥8-|BC|=8-2
          3
          ,
          當(dāng)且僅當(dāng)點(diǎn)M位于線段BC的交點(diǎn)處時(shí)等號成立,
          由BC⊥AB知此時(shí)點(diǎn)M的橫坐標(biāo)為2,則其縱坐標(biāo)為3,
          即當(dāng)點(diǎn)M的坐標(biāo)為(2,3)時(shí)|MC|+|MA|有最小值8-2
          3
          點(diǎn)評:重點(diǎn)考查了利用曲線的方程這一概念,先建立平面直角坐標(biāo)系,然后利用定義法求其動(dòng)點(diǎn)的軌跡方程,并進(jìn)行實(shí)際問題的排雜.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,SD=
          2
          a.
          (Ⅰ)求證:平面SAB⊥平面SAD;
          (Ⅱ)設(shè)SB的中點(diǎn)為M,且DM⊥MC,試求出四棱錐S-ABCD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2.點(diǎn)E、F分別是PC、BD的中點(diǎn),現(xiàn)將△PDC沿CD折起,使PD⊥平面ABCD,
          (1)求證:EF∥平面PAD;
          (2)求點(diǎn)A到平面PBC的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在直角梯形ABCD中,AB∥CD,AD=CD=1,AB=3,動(dòng)點(diǎn)P在BCD內(nèi)運(yùn)動(dòng)(含邊界),設(shè)
          AP
          AD
          AB
          ,則α+β的最大值是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在直角梯形ABCD中,已知BC∥AD,AB⊥AD,AB=4,BC=2,AD=4,若P為CD的中點(diǎn),則
          PA
          PB
          的值為
          5
          5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AD=1,AB=2,CD=3,E、F分別為線段CD、AB上的點(diǎn),且EF∥AD.將梯形沿EF折起,使得平面ADEF⊥平面BCEF,折后BD與平面ADEF所成角正切值為
          2
          2

          (Ⅰ)求證:BC⊥平面BDE;
          (Ⅱ)求平面BCEF與平面ABD所成二面角(銳角)的大。

          查看答案和解析>>

          同步練習(xí)冊答案