已知公比不為1的等比數(shù)列的前
項(xiàng)和為
,
,且
成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列
的前
項(xiàng)和
.
(1)數(shù)列的通項(xiàng)公式為
; (2)
.
解析試題分析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/40/3/1o0kl2.png" style="vertical-align:middle;" />成等差數(shù)列,∴,得
,則
.
(2)先由裂項(xiàng)相消法求出,然后可直接求出數(shù)列
的前
項(xiàng)和
.
∴
試題解析:(1)∵成等差數(shù)列,∴
,∴
,
得,則
6分
(2)∵
∴ 12分
考點(diǎn):數(shù)列通項(xiàng)公式及前項(xiàng)和的求法、數(shù)列綜合應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的前n項(xiàng)和
滿足
(1)寫(xiě)出數(shù)列的前3項(xiàng)
、
、
;
(2)求數(shù)列的通項(xiàng)公式;
(3)證明對(duì)于任意的整數(shù)有
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的前三項(xiàng)分別為
,
,
,(其中
為正常數(shù))。設(shè)
。
(1)歸納出數(shù)列的通項(xiàng)公式,并證明數(shù)列
不可能為等比數(shù)列;
(2)若=1,求
的值;
(3)若=4,試證明:當(dāng)
時(shí),
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在公差不為0的等差數(shù)列中,
,且
成等比數(shù)列.
(1)求的通項(xiàng)公式;
(2)設(shè),證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知an=n×0.8n(n∈N*).
(1)判斷數(shù)列{an}的單調(diào)性;
(2)是否存在最小正整數(shù)k,使得數(shù)列{an}中的任意一項(xiàng)均小于k?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}滿足a1=3,an+1=an+p·3n(n∈N*,p為常數(shù)),a1,a2+6,a3成等差數(shù)列.
(1)求p的值及數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=,證明:bn≤
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
觀察下列三角形數(shù)表,假設(shè)第n行的第二個(gè)數(shù)為an(n≥2,n∈N*).
(1)依次寫(xiě)出第六行的所有6個(gè)數(shù);
(2)歸納出an+1與an的關(guān)系式并求出{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的通項(xiàng)
,
.
(Ⅰ)求;
(Ⅱ)判斷數(shù)列的增減性,并說(shuō)明理由;
(Ⅲ)設(shè),求數(shù)列
的最大項(xiàng)和最小項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知{an}是等差數(shù)列,a1=3,Sn是其前n項(xiàng)和,在各項(xiàng)均為正數(shù)的等比數(shù)列{bn}中,b1=1,且b2+S2=10,S5 =5b3+3a2.
(I )求數(shù)列{an}, {bn}的通項(xiàng)公式;
(II)設(shè),數(shù)列{cn}的前n項(xiàng)和為Tn,求證
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com