日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>o)
          的左焦點(diǎn)為F(-
          2
          ,0),離心率e=
          2
          2
          ,M、N是橢圓上的動(dòng)點(diǎn).
          (Ⅰ)求橢圓標(biāo)準(zhǔn)方程;
          (Ⅱ)設(shè)動(dòng)點(diǎn)P滿足:
          OP
          =
          OM
          +2
          ON
          ,直線OM與ON的斜率之積為-
          1
          2
          ,問:是否存在定點(diǎn)F1,F(xiàn)2,使得|PF1|+|PF2|為定值?,若存在,求出F1,F(xiàn)2的坐標(biāo),若不存在,說明理由.
          (Ⅲ)若M在第一象限,且點(diǎn)M,N關(guān)于原點(diǎn)對(duì)稱,點(diǎn)M在x軸上的射影為A,連接NA 并延長(zhǎng)交橢圓于點(diǎn)B,證明:MN⊥MB.
          (Ⅰ)由題設(shè)可知:
          c=
          2
          c
          a
          =
          2
          2
          ,∴a=2,c=
          2
          …2分
          ∴b2=a2-c2=2…3分
          ∴橢圓的標(biāo)準(zhǔn)方程為:
          x2
          4
          +
          y2
          2
          =1
          …4分
          (Ⅱ)設(shè)P(xP,yP),M(x1,y1),N(x2,y2),由
          OP
          =
          OM
          +2
          ON
          可得:
          xP=x1+2x2
          yP=y1+2y2
          ①…5分
          由直線OM與ON的斜率之積為-
          1
          2
          可得:
          y1y2
          x1x2
          =-
          1
          2
          ,即x1x2+2y1y2=0②…6分
          由①②可得:xP2+2yP2=(x12+2y12)+(x22+2y22
          ∵M(jìn)、N是橢圓上的點(diǎn),∴x12+2y12=4,x22+2y22=4
          ∴xP2+2yP2=8,即
          x2P
          8
          +
          y2P
          4
          =1
          …..8分
          由橢圓定義可知存在兩個(gè)定點(diǎn)F1(-2,0),F(xiàn)2(2,0),使得動(dòng)點(diǎn)P到兩定點(diǎn)距離和為定值4
          2
          ;….9分;
          (Ⅲ)證明:設(shè)M(x1,y1),B(x2,y2),則x1>0,y1>0,x2>0,y2>0,x1≠x2,A(x1,0),N(-x1,-y1)…..10分
          由題設(shè)可知lAB斜率存在且滿足kNA=kNB,∴
          y1
          2x1
          =
          y2+y1
          x2+x1
          ….③
          kMN•kMB+1=
          y1
          x1
          y2-y1
          x2-x1
          +1④…12分
          將③代入④可得:kMN•kMB+1=
          2(y2+y1)
          x2+x1
          y2-y1
          x2-x1
          +1=
          (
          x22
          +2
          y22
          )-(
          x21
          +2
          y21
          )
          x22
          -
          x21
          ⑤….13分
          ∵點(diǎn)M,B在橢圓
          x2
          4
          +
          y2
          2
          =1
          上,∴kMN•kMB+1=
          (
          x22
          +2
          y22
          )-(
          x21
          +2
          y21
          )
          x22
          -
          x21
          =0
          ∴kMN•kMB+1=0
          ∴kMN•kMB=-1
          ∴MN⊥MB…14分.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左右焦點(diǎn)分別為F1,F(xiàn)2,左頂點(diǎn)為A,若|F1F2|=2,橢圓的離心率為e=
          1
          2

          (Ⅰ)求橢圓的標(biāo)準(zhǔn)方程,
          (Ⅱ)若P是橢圓上的任意一點(diǎn),求
          PF1
          PA
          的取值范圍
          (III)直線l:y=kx+m與橢圓相交于不同的兩點(diǎn)M,N(均不是長(zhǎng)軸的頂點(diǎn)),AH⊥MN垂足為H且
          AH
          2
          =
          MH
          HN
          ,求證:直線l恒過定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的左焦點(diǎn)F(-c,0)是長(zhǎng)軸的一個(gè)四等分點(diǎn),點(diǎn)A、B分別為橢圓的左、右頂點(diǎn),過點(diǎn)F且不與y軸垂直的直線l交橢圓于C、D兩點(diǎn),記直線AD、BC的斜率分別為k1,k2
          (1)當(dāng)點(diǎn)D到兩焦點(diǎn)的距離之和為4,直線l⊥x軸時(shí),求k1:k2的值;
          (2)求k1:k2的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的離心率是
          3
          2
          ,且經(jīng)過點(diǎn)M(2,1),直線y=
          1
          2
          x+m(m<0)
          與橢圓相交于A,B兩點(diǎn).
          (1)求橢圓的方程;
          (2)當(dāng)m=-1時(shí),求△MAB的面積;
          (3)求△MAB的內(nèi)心的橫坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•威海二模)已知橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的離心率為e=
          6
          3
          ,過右焦點(diǎn)做垂直于x軸的直線與橢圓相交于兩點(diǎn),且兩交點(diǎn)與橢圓的左焦點(diǎn)及右頂點(diǎn)構(gòu)成的四邊形面積為
          2
          6
          3
          +2

          (Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
          (Ⅱ)設(shè)點(diǎn)M(0,2),直線l:y=1,過M任作一條不與y軸重合的直線與橢圓相交于A、B兩點(diǎn),若N為AB的中點(diǎn),D為N在直線l上的射影,AB的中垂線與y軸交于點(diǎn)P.求證:
          ND
          MP
          AB
          2
          為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的右焦點(diǎn)為F,過F作y軸的平行線交橢圓于M、N兩點(diǎn),若|MN|=3,且橢圓離心率是方程2x2-5x+2=0的根,求橢圓方程.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案