日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=
          1-|x+1|,x∈[-2,0]
          2f(x-2),x∈(0,+∞)
          ,若方程f(x)=x+a在區(qū)間[-2,4]內(nèi)有3個(gè)不等實(shí)根,則實(shí)數(shù)a的取值范圍是(  )
          分析:作出函數(shù)y=f(x)和y=x+a的圖象.利用兩個(gè)圖象的交點(diǎn)個(gè)數(shù)問題確定a的取值范圍.
          解答:解:若0≤x≤2,則-2≤x-2≤0,
          ∴f(x)=2f(x-2)=2(1-|x-2+1|)=2-2|x-1|,0≤x≤2.
          若2≤x≤4,則0≤x-2≤2,
          ∴f(x)=2f(x-2)=2(2-2|x-2-1|)=4-4|x-3|,2≤x≤4.
          ∴f(1)=2,f(2)=0,f(3)=4.
          設(shè)y=f(x)和y=x+a,則方程f(x)=x+a在區(qū)間[-2,4]內(nèi)有3個(gè)不等實(shí)根,、
          等價(jià)為函數(shù)y=f(x)和y=x+a在區(qū)間[-2,4]內(nèi)有3個(gè)不同的零點(diǎn).
          作出函數(shù)f(x)和y=x+a的圖象,如圖:
          當(dāng)直線經(jīng)過點(diǎn)A(2,0)時(shí),兩個(gè)圖象有2個(gè)交點(diǎn),此時(shí)直線y=x+a為y=x-2,
          當(dāng)直線經(jīng)過點(diǎn)O(0,0)時(shí),兩個(gè)圖象有4個(gè)交點(diǎn),此時(shí)直線y=x+a為y=x,
          當(dāng)直線經(jīng)過點(diǎn)B(3,4)和C(1,2)時(shí),兩個(gè)圖象有3個(gè)交點(diǎn),此時(shí)直線y=x+a為y=x+1,
          ∴要使方程f(x)=x+a在區(qū)間[-2,4]內(nèi)有3個(gè)不等實(shí)根,
          則a=1或-2<a<0.
          故選:D.
          點(diǎn)評:本題主要考查方程根的個(gè)數(shù)的應(yīng)用,將方程轉(zhuǎn)化為函數(shù),利用數(shù)形結(jié)合是解決此類問題的基本方法.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)、已知函數(shù)f(x)=
          1+
          2
          cos(2x-
          π
          4
          )
          sin(x+
          π
          2
          )
          .若角α在第一象限且cosα=
          3
          5
          ,求f(α)

          (2)函數(shù)f(x)=2cos2x-2
          3
          sinxcosx
          的圖象按向量
          m
          =(
          π
          6
          ,-1)
          平移后,得到一個(gè)函數(shù)g(x)的圖象,求g(x)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=(1-
          a
          x
          )ex
          ,若同時(shí)滿足條件:
          ①?x0∈(0,+∞),x0為f(x)的一個(gè)極大值點(diǎn);
          ②?x∈(8,+∞),f(x)>0.
          則實(shí)數(shù)a的取值范圍是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          1+lnx
          x

          (1)如果a>0,函數(shù)在區(qū)間(a,a+
          1
          2
          )
          上存在極值,求實(shí)數(shù)a的取值范圍;
          (2)當(dāng)x≥1時(shí),不等式f(x)≥
          k
          x+1
          恒成立,求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          1+
          1
          x
          ,(x>1)
          x2+1,(-1≤x≤1)
          2x+3,(x<-1)

          (1)求f(
          1
          2
          -1
          )
          與f(f(1))的值;
          (2)若f(a)=
          3
          2
          ,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          定義在D上的函數(shù)f(x)如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=
          1-m•2x1+m•2x

          (1)m=1時(shí),求函數(shù)f(x)在(-∞,0)上的值域,并判斷f(x)在(-∞,0)上是否為有界函數(shù),請說明理由;
          (2)若函數(shù)f(x)在[0,1]上是以3為上界的有界函數(shù),求m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案