日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (文)已知f(n)是關(guān)于正整數(shù)n的命題.小明證明了命題f(1),f(2),f(3)均成立,并對任意的正整數(shù)k,在假設(shè)f(k)成立的前提下,證明了f(k+m)成立,其中m為某個固定的整數(shù),若要用上述證明說明f(n)對一切正整數(shù)n均成立,則m的最大值為( )
          A.1
          B.2
          C.3
          D.4
          【答案】分析:本題考查的知識點(diǎn)是數(shù)學(xué)歸納法,由歸納法的步驟知,我們由在假設(shè)f(k)成立的前提下,證明了f(k+m)成立,由此類推,對n>m的任意整數(shù)均成立,結(jié)合小明證明了命題f(1),f(2),f(3)均成立,由此不難得到m的最大值.
          解答:解:由題意可知,
          f(n)對n=1,2,3都成立,
          假設(shè)f(k)成立的前提下,證明了f(k+m)成立時,
          m的最大值可以為:3.
          故選C.
          點(diǎn)評:本題是基礎(chǔ)題,考查數(shù)學(xué)歸納法證明問題的步驟,理解遞推關(guān)系,找出規(guī)律是判斷正誤的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2006•松江區(qū)模擬)(文)已知函數(shù)f(x)=ax2-2
          4+2b-b2
          x
          ,g(x)=-
          1-(x-a)2
          ,(a,b∈R)
          (Ⅰ)當(dāng)b=0時,若f(x)在[2,+∞)上單調(diào)遞增,求a的取值范圍;
          (Ⅱ)求滿足下列條件的所有實數(shù)對(a,b):當(dāng)a是整數(shù)時,存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值;
          (Ⅲ)對滿足(Ⅱ)的條件的一個實數(shù)對(a,b),試構(gòu)造一個定義在D={x|x>-2,且x≠2k-2,k∈N}上的函數(shù)h(x),使當(dāng)x∈(-2,0)時,h(x)=f(x),當(dāng)x∈D時,h(x)取得最大值的自變量的值構(gòu)成以x0為首項的等差數(shù)列.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•奉賢區(qū)二模)(文)已知f(n)是關(guān)于正整數(shù)n的命題.小明證明了命題f(1),f(2),f(3)均成立,并對任意的正整數(shù)k,在假設(shè)f(k)成立的前提下,證明了f(k+m)成立,其中m為某個固定的整數(shù),若要用上述證明說明f(n)對一切正整數(shù)n均成立,則m的最大值為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:單選題

          (文)已知f(n)是關(guān)于正整數(shù)n的命題.小明證明了命題f(1),f(2),f(3)均成立,并對任意的正整數(shù)k,在假設(shè)f(k)成立的前提下,證明了f(k+m)成立,其中m為某個固定的整數(shù),若要用上述證明說明f(n)對一切正整數(shù)n均成立,則m的最大值為


          1. A.
            1
          2. B.
            2
          3. C.
            3
          4. D.
            4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年上海市奉賢區(qū)高考數(shù)學(xué)三模試卷(文理合卷)(解析版) 題型:選擇題

          (文)已知f(n)是關(guān)于正整數(shù)n的命題.小明證明了命題f(1),f(2),f(3)均成立,并對任意的正整數(shù)k,在假設(shè)f(k)成立的前提下,證明了f(k+m)成立,其中m為某個固定的整數(shù),若要用上述證明說明f(n)對一切正整數(shù)n均成立,則m的最大值為( )
          A.1
          B.2
          C.3
          D.4

          查看答案和解析>>

          同步練習(xí)冊答案