日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在四面體中,,.

          (1)證明:平面平面

          (2)求直線與平面所成角的正弦值.

          【答案】(1)詳見(jiàn)解析;(2).

          【解析】

          (1) 設(shè)的中點(diǎn),連接,.易知,從而平面,故平面平面;(2)以為原點(diǎn),,分別為軸、軸、軸、建立空間直角坐標(biāo)系.求出直線的方向向量,平面的法向量,代入公式即可得到直線與平面所成角的正弦值.

          (1)證明:設(shè)的中點(diǎn),連接,.

          的中點(diǎn),

          ∴在中,,即為等邊三角形,

          ,∴.

          中,,,

          ,且,

          于是,可知.

          ,∴平面

          平面,∴平面平面.

          (2)解:由(1)知,,,兩兩垂直,以為原點(diǎn),,分別為軸、軸、軸、建立空間直角坐標(biāo)系.

          ,,,

          設(shè)平面的法向量,,

          ,令,得,又.

          設(shè)直線與平面所成角為,

          ,即直線與平面所成角的正弦值為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知,在區(qū)間上存在三個(gè)不同的實(shí)數(shù)使得以為邊長(zhǎng)的三角形是直角三角形,則的取值范圍是(

          A. B.

          C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知某校6個(gè)學(xué)生的數(shù)學(xué)和物理成績(jī)?nèi)缦卤恚?/span>

          學(xué)生的編號(hào)

          1

          2

          3

          4

          5

          6

          數(shù)學(xué)

          89

          87

          79

          81

          78

          90

          物理

          79

          75

          77

          73

          72

          74

          (1)若在本次考試中,規(guī)定數(shù)學(xué)在80分以上(包括80分)且物理在75分以上(包括75分)的學(xué)生為理科小能手.從這6個(gè)學(xué)生中抽出2個(gè)學(xué)生,設(shè)表示理科小能手的人數(shù),求的分布列和數(shù)學(xué)期望;

          (2)通過(guò)大量事實(shí)證明發(fā)現(xiàn),一個(gè)學(xué)生的數(shù)學(xué)成績(jī)和物理成績(jī)具有很強(qiáng)的線性相關(guān)關(guān)系,在上述表格是正確的前提下,用表示數(shù)學(xué)成績(jī),用表示物理成績(jī),求的回歸方程.

          參考數(shù)據(jù)和公式:,其中,.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的一個(gè)焦點(diǎn)在直線上,且離心率.

          (1)求該橢圓的方程;

          (2)若是該橢圓上不同的兩點(diǎn),且線段的中點(diǎn)在直線上,試證: 軸上存在定點(diǎn),對(duì)于所有滿足條件的,恒有;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù)。

          (1)若曲線在點(diǎn)處的切線與直線垂直,求的單調(diào)遞減區(qū)間和極小值(其中為自然對(duì)數(shù)的底數(shù));

          (2)若對(duì)任意恒成立,求的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù),若函數(shù)內(nèi)有兩個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍是( )

          A. B. (0,1)

          C. (0,2) D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)為奇函數(shù).

          1)求a的值,并證明R上的增函數(shù);

          2)若關(guān)于t的不等式f(t22t)f(2t2k)0的解集非空,求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某地區(qū)高考實(shí)行新方案,規(guī)定:語(yǔ)文、數(shù)學(xué)和英語(yǔ)是考生的必考科目,考生還須從物理化學(xué),生物,歷史,地理和政治六個(gè)科目中選取三個(gè)科目作為選考科目若一個(gè)學(xué)生從六個(gè)科目中選出了三個(gè)科目作為選考科目則稱該學(xué)生的選考方案確定;否則稱該學(xué)生選考方案待確定例如,學(xué)生甲選擇“物理、化學(xué)和生物”三個(gè)選考科目,則學(xué)生甲的選考方案確定,“物理、化學(xué)和生物”為其選考方案

          某學(xué)校為了解高一年級(jí)420名學(xué)生選考科目的意向,隨機(jī)選取30名學(xué)生進(jìn)行了一次調(diào)查統(tǒng)計(jì)選考科目人數(shù)如下表:

          性別

          選考方案確定情況

          物理

          化學(xué)

          生物

          歷史

          地理

          政治

          男生

          選考方案確定的有8

          8

          8

          4

          2

          1

          1

          選考方案待確定的有6

          4

          3

          0

          1

          0

          0

          女生

          選考方案確定的有10

          8

          9

          6

          3

          3

          1

          選考方案待確定的有6

          5

          4

          1

          0

          0

          1

          (Ⅰ)估計(jì)該學(xué)校高一年級(jí)選考方案確定的學(xué)生中選考生物的學(xué)生有多少人?

          (Ⅱ)假設(shè)男生、女生選擇選考科目是相互獨(dú)立的從選考方案確定的8位男生中隨機(jī)選出1從選考方案確定的10位女生中隨機(jī)選出1試求該男生和該女生的選考方案中都含有歷史學(xué)科的概率;

          (Ⅲ)從選考方案確定的8名男生中隨機(jī)選出2,設(shè)隨機(jī)變量

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四邊形是正方形, 平面, , , 分別為 , 的中點(diǎn).

          1)求證: 平面

          2)求平面與平面所成銳二面角的大;

          3)在線段上是否存在一點(diǎn),使直線與直線所成的角為?若存在,求出線段的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案