日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)f(x)在x=x0處可導(dǎo),則

          A.與x0h都有關(guān)                                    B.僅與x0有關(guān),而與h無(wú)關(guān)

          C.僅與h有關(guān),而與x0無(wú)關(guān)                        D.與x0、h均無(wú)關(guān)

          B


          解析:

          本題考查導(dǎo)數(shù)的定義.在導(dǎo)數(shù)的定義式中,自變量增量可正、可負(fù),但不為0.導(dǎo)數(shù)是一個(gè)局部概念,它只與函數(shù)在某一點(diǎn)及其附近的函數(shù)值有關(guān),與自變量增量無(wú)關(guān).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)f(x)=ax2+bx+1(a,b為實(shí)數(shù)),
          (1)若f(-1)=0且對(duì)任意實(shí)數(shù)x均有f(x)≥0成立,求f(x)表達(dá)式;
          (2)在(1)的條件下,若g(x)=f(x)-kx,在區(qū)間[-2,2]上是單調(diào)函數(shù),則實(shí)數(shù)k的取值范圍;
          (3)在(1)的條件下,F(x)=
          f(x) (x>0)
          -f(x) (x<0)
          ,當(dāng)x∈[-2,2]且x≠0時(shí),求F(x)的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足條件:①當(dāng)x∈R時(shí),f(x-4)=f(2-x),且x≤f(x)≤
          12
          (1+x2)
          ;②f(x)在R上的最小值為0.
          (1)求f(1)的值及f(x)的解析式;
          (2)若g(x)=f(x)-k2x在[-1,1]上是單調(diào)函數(shù),求k的取值范圍;
          (3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)f(x)=
          1
          3
          ax3+
          1
          2
          bx2+cx(a,b,c∈R,a≠0)
          的圖象在點(diǎn)(x,f(x))處的切線的斜率為k(x),且函數(shù)g(x)=k(x)-
          1
          2
          x
          為偶函數(shù).若函數(shù)k(x)滿足下列條件:①k(-1)=0;②對(duì)一切實(shí)數(shù)x,不等式k(x)≤
          1
          2
          x2+
          1
          2
          恒成立.
          (Ⅰ)求函數(shù)k(x)的表達(dá)式;
          (Ⅱ)求證:
          1
          k(1)
          +
          1
          k(2)
          +…+
          1
          k(n)
          2n
          n+2
          (n∈N*).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•濰坊一模)設(shè)函數(shù)f(x)=
          1
          3
          mx3+(4+m)x2,g(x)=alnx
          ,其中a≠0.
          ( I )若函數(shù)y=g(x)圖象恒過(guò)定點(diǎn)P,且點(diǎn)P在y=f(x)的圖象上,求m的值;
          (Ⅱ)當(dāng)a=8時(shí),設(shè)F(x)=f′(x)+g(x),討論F(x)的單調(diào)性;
          (Ⅲ)在(I)的條件下,設(shè)G(x)=
          f(x),x≤1
          g(x),x>1
          ,曲線y=G(x)上是否存在兩點(diǎn)P、Q,使△OPQ(O為原點(diǎn))是以O(shè)為直角頂點(diǎn)的直角三角形,且該三角形斜邊的中點(diǎn)在y軸上?如果存在,求a的取值范圍;如果不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:濰坊一模 題型:解答題

          設(shè)函數(shù)f(x)=
          1
          3
          mx3+(4+m)x2,g(x)=alnx
          ,其中a≠0.
          ( I )若函數(shù)y=g(x)圖象恒過(guò)定點(diǎn)P,且點(diǎn)P在y=f(x)的圖象上,求m的值;
          (Ⅱ)當(dāng)a=8時(shí),設(shè)F(x)=f′(x)+g(x),討論F(x)的單調(diào)性;
          (Ⅲ)在(I)的條件下,設(shè)G(x)=
          f(x),x≤1
          g(x),x>1
          ,曲線y=G(x)上是否存在兩點(diǎn)P、Q,使△OPQ(O為原點(diǎn))是以O(shè)為直角頂點(diǎn)的直角三角形,且該三角形斜邊的中點(diǎn)在y軸上?如果存在,求a的取值范圍;如果不存在,說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案