日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 某地區(qū)為了解高二學(xué)生作業(yè)量和玩電腦游戲的情況,對(duì)該地區(qū)內(nèi)所有高二學(xué)生采用隨機(jī)抽樣的方法,得到一個(gè)容量為200的樣本.統(tǒng)計(jì)數(shù)據(jù)如下:

          (1)已知該地區(qū)共有高二學(xué)生42500名,根據(jù)該樣本估計(jì)總體,其中喜歡電腦游戲并認(rèn)為作業(yè)不多的人有多少名?
          (2)在A,B,C,D,E,F(xiàn)六名學(xué)生中,僅有A,B兩名學(xué)生認(rèn)為作業(yè)多.如果從這六名學(xué)生中隨機(jī)抽取兩名,求至少有一名學(xué)生認(rèn)為作業(yè)多的概率.

          (1)7650名;(2)

          解析試題分析:(1)利用樣本估計(jì)總體,可求得喜歡電腦游戲并認(rèn)為作業(yè)不多的人數(shù);(2)用列舉法,并利用古典概型即可求得至少有一名學(xué)生認(rèn)為作業(yè)多的概率
          試題解析:(1)(名)        5分
          (2)【方法一】從這六名學(xué)生中隨機(jī)抽取兩名的基本事件有:{A,B},{A,C},{A,D},{A,E},{A,F(xiàn)},{B,C},{B,D},{B,E},{B,F(xiàn)},{C,D},{C,E},{C,F(xiàn)},{D,E},{D,F(xiàn)},{E,F(xiàn)}共15個(gè)            7分
          其中至少有一個(gè)學(xué)生認(rèn)為作業(yè)多的事件有{A,B},{A,C},{A,D},{A,E},{A,F(xiàn)},{B,C},{B,D},{B,E},{B,F(xiàn)}共9個(gè)        9分

          即至少有一名學(xué)生認(rèn)為作業(yè)多的概率為.        12分
          【方法二】6名學(xué)生中隨機(jī)抽取2名的選法有種,     7分
          其中至少有一名學(xué)生認(rèn)為作業(yè)多的選法有=9種,     9分

          即至少有一名學(xué)生認(rèn)為作業(yè)多的概率為.        12分
          【方法三】6名學(xué)生中隨機(jī)抽取2名的選法有種,     7分
          其中沒(méi)有人認(rèn)為作業(yè)多的選法有種        9分

          即至少有一名學(xué)生認(rèn)為作業(yè)多的概率為.        12分
          考點(diǎn):統(tǒng)計(jì),隨機(jī)抽樣,用樣本估計(jì)總體,古典概型.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          在平面內(nèi),不等式確定的平面區(qū)域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/21/7/1ejiy3.png" style="vertical-align:middle;" />,不等式組確定的平面區(qū)域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9b/a/8tah82.png" style="vertical-align:middle;" />.
          (1)定義橫、縱坐標(biāo)為整數(shù)的點(diǎn)為“整點(diǎn)”.在區(qū)域任取3個(gè)整點(diǎn),求這些整點(diǎn)中恰有2個(gè)整點(diǎn)在區(qū)域的概率;
          (2)在區(qū)域每次任取個(gè)點(diǎn),連續(xù)取次,得到個(gè)點(diǎn),記這個(gè)點(diǎn)在區(qū)域的個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知方程是關(guān)于的一元二次方程.
          (1)若是從集合四個(gè)數(shù)中任取的一個(gè)數(shù),是從集合三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)數(shù)根的概率;
          (2)若,,求上述方程有實(shí)數(shù)根的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          (本小題滿分12分)
          甲、乙兩人各進(jìn)行3次射擊,甲每次擊中目標(biāo)的概率為,乙每次擊中目標(biāo)的概率
          (1)記甲擊中目標(biāo)的次數(shù)為ξ,求ξ的概率分布列及數(shù)學(xué)期望Eξ;
          (2)求甲恰好比乙多擊中目標(biāo)2次的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          設(shè)某地區(qū)型血的人數(shù)占總?cè)丝跀?shù)的比為,現(xiàn)從中隨機(jī)抽取3人.
          (1)求3人中恰有2人為型血的概率;
          (2)記型血的人數(shù)為,求的概率分布與數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          以下莖葉圖記錄了甲、乙兩組各三名同學(xué)在期末考試的數(shù)學(xué)成績(jī),乙組記錄中有一個(gè)數(shù)字模糊,無(wú)法確認(rèn).假設(shè)這個(gè)數(shù)字具有隨機(jī)性,并在圖中以a表示.
          (1)若甲、乙兩個(gè)小組的數(shù)學(xué)平均成績(jī)相同,求a的值;
          (2)求乙組平均成績(jī)超過(guò)甲組平均成績(jī)的概率;
          (3)當(dāng)a=2時(shí),分別從甲、乙兩組中各隨機(jī)選取一名同學(xué),設(shè)這兩名同學(xué)成績(jī)之差的絕對(duì)值為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          某工廠生產(chǎn)A,B兩種元件,其質(zhì)量按測(cè)試指標(biāo)劃分,指標(biāo)大于或等于82為正品,小于82為次品.現(xiàn)隨機(jī)抽取這兩種元件各100個(gè)進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:

          測(cè)試
          指標(biāo)
          [70,76)
          [76,82)
          [82,88)
          [88,94)
          [94,100]
          元件A
          8
          12
          40
          32
          8
          元件B
          7
          18
          40
          29
          6
          (1)試分別估計(jì)元件A,元件B為正品的概率;
          (2)生產(chǎn)1個(gè)元件A,若是正品則盈利40元,若是次品則虧損5元;生產(chǎn)1個(gè)元件B,若是正品則盈利50元,若是次品則虧損10元.在(1)的前提下,
          (ⅰ)X為生產(chǎn)1個(gè)元件A和1個(gè)元件B所得的總利潤(rùn),求隨機(jī)變量X的分布列和數(shù)學(xué)期望;
          (ⅱ)求生產(chǎn)5個(gè)元件B所得利潤(rùn)不少于140元的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          某校夏令營(yíng)有3名男同學(xué)和3名女同學(xué),其年級(jí)情況如下表:

           
          一年級(jí)
          二年級(jí)
          三年級(jí)
          男同學(xué)
          A
          B
          C
          女同學(xué)
          X
          Y
          Z
           
          現(xiàn)從這6名同學(xué)中隨機(jī)選出2人參加知識(shí)競(jìng)賽(每人被選到的可能性相同)
          用表中字母列舉出所有可能的結(jié)果
          設(shè)為事件“選出的2人來(lái)自不同年級(jí)且恰有1名男同學(xué)和1名女同學(xué)”,求事件發(fā)生的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

          如上圖矩形ABCD中,點(diǎn)E為邊CD的中點(diǎn),若在矩形ABCD內(nèi)部隨機(jī)取一個(gè)點(diǎn)Q,則點(diǎn)Q取自△ABE內(nèi)部的概率等于________

          查看答案和解析>>

          同步練習(xí)冊(cè)答案