【題目】已知圓,圓
,如圖,
分別交
軸正半軸于點
.射線
分別交
于點
,動點
滿足直線
與
軸垂直,直線
與
軸垂直.
(1)求動點的軌跡
的方程;
(2)過點作直線
交曲線
與點
,射線
與點
,且交曲線
于點
.問:
的值是否是定值?如果是定值,請求出該定值;如果不是定值,請說明理由.
【答案】(1)(2)是定值,為
.
【解析】
(1) 設(shè),再根據(jù)三角函數(shù)的關(guān)系可得
,
,進(jìn)而消參求得軌跡
的方程即可.
(2) 設(shè)直線的方程為
,再聯(lián)立直線與(1)中橢圓的方程,根據(jù)弦長公式化簡
,代入韋達(dá)定理求解即可.
解:方法一:(1)如圖設(shè),則
,所以
,
.
所以動點的軌跡
的方程為
.
方法二:(1)當(dāng)射線的斜率存在時,設(shè)斜率為
,
方程為
,
由得
,同理得
,所以
即有動點
的軌跡
的方程為
.當(dāng)射線
的斜率不存在時,點
也滿足.
(2)由(1)可知為
的焦點,設(shè)直線
的方程為
(斜率不為0時)且設(shè)點
,
,由
得
所以,所以
又射線方程為
,帶入橢圓
的方程得
,即
,
所以
又當(dāng)直線的斜率為
時,也符合條件.綜上,
為定值,且為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是圓
的直徑,點
是圓
上異于
的點,直線
平面
,
分別是
的中點.
(1)記平面與平面
的交線為
,試判斷直線
與平面
的位置關(guān)系,并加以證明;
(2)設(shè)(1)中的直線與圓
的另一個交點為
,且點
滿足
.記直線
與平面
所成的角為
,異面直線
與
所成的角為
,二面角
的大小為
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù),
),曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點為極點,
軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)設(shè)曲線與曲線
的交點分別為
,求
的最大值及此時直線
的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩工人在同樣的條件下生產(chǎn),日產(chǎn)量相等,每天出廢品的情況如下表:
則下列結(jié)論中正確的是 ( )
A. 甲生產(chǎn)的產(chǎn)品質(zhì)量比乙生產(chǎn)的產(chǎn)品質(zhì)量好一些
B. 乙生產(chǎn)的產(chǎn)品質(zhì)量比甲生產(chǎn)的產(chǎn)品質(zhì)量好一些
C. 兩人生產(chǎn)的產(chǎn)品質(zhì)量一樣好
D. 無法判斷誰生產(chǎn)的產(chǎn)品質(zhì)量好一些
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,圖中直棱柱的底面是菱形,其中
.又點
分別在棱
上運動,且滿足:
,
.
(1)求證:四點共面,并證明
∥平面
.
(2)是否存在點使得二面角
的余弦值為
?如果存在,求出
的長;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P一ABCD中,AB=AD=2BC=2,BC∥AD,AB⊥AD,△PBD為正三角形.且PA=2.
(1)證明:平面PAB⊥平面PBC;
(2)若點P到底面ABCD的距離為2,E是線段PD上一點,且PB∥平面ACE,求四面體A-CDE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從六個數(shù)字中任取兩個奇數(shù)和兩個偶數(shù),組成沒有重復(fù)數(shù)字的四位奇數(shù),有__________個這樣的四位奇數(shù)(用數(shù)字填寫答案).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐S-ABCD中,底面ABCD是邊長為2的菱形,,
,二面角S-BD-C的余弦值為
.
(I)證明:平面平面SBD;
(Ⅱ)求二面角A-SD-C的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com