日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 橢圓C的兩個(gè)焦點(diǎn)分別為F1(-1,0)和F2(1,0),若該橢圓C與直線x+y-3=0有公共點(diǎn),則其離心率的最大值為( 。
          分析:根據(jù)e=
          c
          a
          =
          1
          a
          ,可得a越小e越大而橢圓與直線相切時(shí)a最小,將直線方程與橢圓方程聯(lián)立,即可求得結(jié)論.
          解答:解:由題意,c=1,
          e=
          c
          a
          =
          1
          a

          ∴a越小e越大,而橢圓與直線相切時(shí),a最小
          設(shè)橢圓為
          x2
          m
          +
          y2
          m-1
          =1
          ,把直線x+y-3=0代入,化簡整理可得(2m-1)x2+6mx+10m-m2=0
          由△=0,解得:m=5,
          于是a=
          5
          ,e=
          c
          a
          =
          1
          a
          =
          5
          5

          故選C.
          點(diǎn)評:本題考查直線與橢圓的位置關(guān)系,考查橢圓的幾何性質(zhì),解題的關(guān)鍵是確定橢圓與直線相切時(shí)a最。
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C的兩個(gè)焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),點(diǎn)M(1,
          32
          )
          在橢圓C上,拋物線E以橢圓C的中心為頂點(diǎn),F(xiàn)2為焦點(diǎn).
          (1)求橢圓C的方程;
          (2)直線l過點(diǎn)F2,且交y軸于D點(diǎn),交拋物線E于A,B兩點(diǎn).
          ①若F1B⊥F2B,求|AF2|-|BF2|的值;
          ②試探究:線段AB與F2D的長度能否相等?如果|AB|=|F2D|,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•上海)已知橢圓C的兩個(gè)焦點(diǎn)分別為F1(-1,0)、F2(1,0),短軸的兩個(gè)端點(diǎn)分別為B1,B2
          (1)若△F1B1B2為等邊三角形,求橢圓C的方程;
          (2)若橢圓C的短軸長為2,過點(diǎn)F2的直線l與橢圓C相交于P,Q兩點(diǎn),且
          F1P
          F1Q
          ,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•武漢模擬)已知橢圓C的兩個(gè)焦點(diǎn)分別為F1和F2,且點(diǎn)A(-
          5
          ,0),B(
          5
          ,0)在橢圓C上,又F1(-
          5
          ,4)

          (1)求焦點(diǎn)F2的軌跡C的方程;
          (2)若直線y=kx+b(k>0)與曲線C交于M、N兩點(diǎn),以MN為直徑的圓經(jīng)過原點(diǎn),求實(shí)數(shù)b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C的兩個(gè)焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),拋物線E以坐標(biāo)原點(diǎn)為頂點(diǎn),F(xiàn)2為焦點(diǎn).直線l過點(diǎn)F2,且交y軸于D點(diǎn),交拋物線E于A,B兩點(diǎn)若F1B⊥F2B,則|AF2|-|BF2|=
          4
          4

          查看答案和解析>>

          同步練習(xí)冊答案