日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖a所示,在直角梯形ABCD中,AB⊥AD,AD∥BC,F(xiàn)為AD的中點(diǎn),E在BC上,且EF∥AB.已知AB=AD=CE=2,沿線段EF把四邊形CDEF折起如圖b所示,使平面CDEF⊥平面ABEF.
          (1)求證:AF⊥平面CDEF;
          (2)求三棱錐C-ADE的體積;
          (3)求二面角B-AC-D的余弦值.

          【答案】分析:(1)由平面CDFE⊥平面ABEF,AF⊥FE,根據(jù)面面垂直的性質(zhì)定理可得AF⊥平面CDEF;
          (2)AF為三棱錐A-CDE的高,計(jì)算出AF的長及底面三角形ADE的面積,代入棱錐體積公式可得答案;
          (3)利用二面角B-AC-D的余弦值為,即可求得結(jié)論.
          解答:(1)證明:∵平面CDFE⊥平面ABEF,且平面CDFE∩平面ABEF=EF,AF⊥FE,AF?平面ABEF,
          ∴AF⊥平面CDEF;
          (2)解:由(1)知,AF為三棱錐A-CDE的高,且AF=1,
          又∵AB=CE=2,∴S△CDE=×2×2=2,
          故三棱錐C-ADE體積V=AF•S△CDE=;
          (3)解:由題意,AD=,CD=,BC=,AB=2,AC=3
          ∴S△ABC==
          ∵cos∠DCA===
          ∴sin∠DCA=
          sin∠DCA==
          ∴二面角B-AC-D的余弦值為==
          點(diǎn)評:本題考查的知識點(diǎn)是直線與平面垂直的判定,棱錐的體積,考查面面角,解題的關(guān)鍵是熟練掌握面面垂直,線面垂直及線線垂直的相互轉(zhuǎn)化,判斷出棱錐的高和底面面積,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•廣東)如圖1,在等腰直角三角形ABC中,∠A=90°,BC=6,D,E分別是AC,AB上的點(diǎn),CD=BE=
          2
          ,O為BC的中點(diǎn).將△ADE沿DE折起,得到如圖2所示的四棱椎A(chǔ)′-BCDE,其中A′O=
          3

          (1)證明:A′O⊥平面BCDE;
          (2)求二面角A′-CD-B的平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖a所示,在直角梯形ABCD中,AB⊥AD,AD∥BC,F(xiàn)為AD的中點(diǎn),E在BC上,且EF∥AB.已知AB=AD=CE=2,沿線段EF把四邊形CDEF折起如圖b所示,使平面CDEF⊥平面ABEF.
          (1)求證:AF⊥平面CDEF;
          (2)求三棱錐C-ADE的體積;
          (3)求二面角B-AC-D的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖a所示,在直角梯形ABCD中,AB⊥AD,AD∥BC,F(xiàn)為AD的中點(diǎn),E在BC上,且EF∥AB.已知AB=AD=CE=2,沿線段EF把四邊形CDEF折起如圖b所示,使平面CDEF⊥平面ABEF.
          (1)求證:AF⊥平面CDEF;
          (2)求三棱錐C-ADE的體積;
          (3)求二面角B-AC-D的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖a所示,在直角梯形ABCD中,AB⊥AD,ADBC,F(xiàn)為AD的中點(diǎn),E在BC上,且EFAB.已知AB=AD=CE=2,沿線段EF把四邊形CDEF折起如圖b所示,使平面CDEF⊥平面ABEF.
          (1)求證:AF⊥平面CDEF;
          (2)求三棱錐C-ADE的體積;
          (3)求二面角B-AC-D的余弦值.
          精英家教網(wǎng)

          查看答案和解析>>

          同步練習(xí)冊答案