日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1.  

              (理)如圖2,E、F分別是矩形ABCD的邊AB、CD的中點(diǎn),GEF上的一點(diǎn).

          將△GAB、△GCB分別沿AB、CD翻折成△G1AB、△G2CD,并連結(jié)G1G2,使得平面G1AB⊥平面ABCDG1G2//AD,且G1G2<AD. 連結(jié)BG2,如圖3.

             (Ⅰ)證明平面G1AB⊥平面G1ADG2;

             (Ⅱ)當(dāng)AB=12,BC=25,EG=8時(shí),求直線BG2和平面G1ADG2所成的角.

           

           

           

          (文)已知某質(zhì)點(diǎn)的運(yùn)動(dòng)方程為,其運(yùn)動(dòng)軌跡的一部分如圖所示.

           
             (1)試確定b、c的值;

             (2)若當(dāng)恒成立,

          求d的取值范圍.

           

           

           

           

           

           

           

          【答案】

           (理)解  解法一(I)因?yàn)槠矫?i>G1AB⊥平面ABCD,平面G1AB∩平面ABCD=AB

           
              ADAB,AD平面ABCD,所以AD⊥平面G1AB. 又AD 平面G1ADG2,所以平面G1AB⊥平面G1ADG2.

          (II)過點(diǎn)BBHAG1于點(diǎn)H,連結(jié)G2H,

          由(I)的結(jié)論可知,BH⊥平面G1ADG2,

          所以∠BG1HBG2和平面G1ADG2所成的角.

          因?yàn)槠矫?i>G1AB⊥平面ABCD,

          平面G1AB∩平面ABCD=ABG1E=AB

          G1E平面G1AB,所以G1E⊥平面ABCD,故G1EEF.

          因?yàn)?i>G1G2<ADAD=EF,所以可在EF上取一點(diǎn)O,使EO=G1G2,又因

           
          G1G2//AD//EO,所以四邊形G1EOG2是矩形.

          由題設(shè)AB=12,BC=25,EG=8,則GF=17.

          所以G2O=G1E=8,G2F=17,

          OF=

          因?yàn)?i>AD⊥平面G1AB,G1G2//AD

          所以G1G2⊥平面G1AB,從而G1G2G1B.

          BG=BE2+EG+G1G=62+82+102=200,BG2=.

          AG1=

          即直線BG2與平面G1ADG2所成的角是

          解法二 (I)因?yàn)槠矫?i>G1AB⊥平面ABCD,平面G1AB∩平面ABCD=AB,

          G1EAB,G1E平面G1AB,所以G1E⊥平面ABCD,從而G1EAD.

          ABAD,所以AD⊥平面G1AB. 因?yàn)?i>AD平面G1ADG2,

          所以平面G1AB⊥平面G1ADG2.

          (II)由(I)可知,G1E⊥平面ABCD,故可以E為原點(diǎn),分別以直線EBEF、EG1,為x軸、y軸、z軸建立空間直角坐標(biāo)系(如圖).由題設(shè)AB=12,BC=25,EG=8,

          EB=6,EF=25,EG1=8,相關(guān)各點(diǎn)的坐標(biāo)分別是A(-6,0,0),

          D(-6,25,0),G1(0,0,8),B(6,0,0)

          所以.

          設(shè)的一個(gè)法向量,

          過點(diǎn)G2G2O⊥平面ABCD于點(diǎn)O,因?yàn)?i>G2G=G2D,所以OC=OD

          于是點(diǎn)Oy軸上.

          因?yàn)?i>G1G2//AD,所以G1G2//EF,G2O=G1E=8.

          設(shè)G2(0,m,8)(0<m<25),由172=82+(25-m2解得m=10,

          所以=(0,10,8)-(6,0,0)=(-6,10,8).

          設(shè)BG2和平面G1ADG2所成的有是θ,則

          故直線BG2與平面G1ADG2所成的角是

          (文) 解:(1)S′(t)=3t2+2bt+c,由圖象可知,S(t)在t=1和t=3處取極值,

          ∴S′(1)=0,S′(3)=0,…………………………………………2分

          即1,3,是方程3t2+2bt+c=0的兩根,

             (2)由(1)知,S′(t)=tt2+9t+d, S′(t)=3(t-1)(t-3).

              當(dāng)t∈[,1]時(shí),S′(t)>0,當(dāng)t∈(1,3)時(shí),S′(t)<0,

          當(dāng)t∈(3,4)時(shí),S′(t)>0.

          ∴當(dāng)t∈[,4]時(shí),S(t)的最大值為4+d,…………………………9分

          S(t)<3d2在[,4]上恒成立的充要條件是4+d<3d2

          ∴解得d的取值范圍是d>或d<-1.………………………………12分

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)(理)如圖,PA⊥平面ABCD,四邊形ABCD是正方形,PA=AD=2,點(diǎn)E、F、G分別為線段PA、PD和CD的中點(diǎn).
          (1)求異面直線EG與BD所成角的大。
          (2)在線段CD上是否存在一點(diǎn)Q,使得點(diǎn)A到平面EFQ的距離恰為
          4
          5
          ?若存在,求出線段CQ的長;若不存在,請(qǐng)說明理由.
          (文)已知坐標(biāo)平面內(nèi)的一組基向量為
          e
          1
          =(1,sinx)
          e
          2
          =(0,cosx)
          ,其中x∈[0,
          π
          2
          )
          ,且向量
          a
          =
          1
          2
          e
          1
          +
          3
          2
          e
          2

          (1)當(dāng)
          e
          1
          e
          2
          都為單位向量時(shí),求|
          a
          |

          (2)若向量
          a
          和向量
          b
          =(1,2)
          共線,求向量
          e
          1
          e
          2
          的夾角.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (理)如圖,四棱錐P-ABCD的底面是矩形,PA⊥面ABCD,PA=2
          19
          ,AB=8,BC=6,點(diǎn)E是PC的中點(diǎn),F(xiàn)在AD上且AF:FD=1:2.建立適當(dāng)坐標(biāo)系.
          (1)求EF的長;
          (2)證明:EF⊥PC.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•崇明縣二模)(理)如圖,PA⊥平面ABCD,四邊形ABCD是正方形,PA=AD=2,點(diǎn)E、F、G分別為線段PA、PD和CD的中點(diǎn).
          (1)求異面直線EG與BD所成角的大;
          (2)在線段CD上是否存在一點(diǎn)Q,使得點(diǎn)A到平面EFQ的距離恰為
          45
          ?若存在,求出線段CQ的長;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (04年湖南卷理)(12分)

          如圖,在底面是菱形的四棱錐中,

          ,點(diǎn)E在PD上,且PE:ED=2:1。

          (Ⅰ)證明;

          (Ⅱ)求以AC為棱,EAC與DAC為面的二面角的大小;

          (Ⅲ)在棱PC上是否存在一點(diǎn)F,使BF//平面AEC?證明你的結(jié)論。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案