日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知△ABC的三邊長(zhǎng)成等差數(shù)列,公差為2,且最大角的正弦值為 ,則這個(gè)三角形的周長(zhǎng)是(
          A.9
          B.12
          C.15
          D.18

          【答案】C
          【解析】解:不妨設(shè)三角形的三邊分別為a、b、c,且a>b>c>0, ∵由于公差為d=2,三個(gè)角分別為、A、B、C,
          ∴a﹣b=b﹣c=2,即:a=c+4,b=c+2,
          ∵sinA=
          ∴A=60°或120°.
          ∵若A=60°,由于三條邊不相等,則必有角大于A,矛盾,
          ∴A=120°.
          ∴cosA= = = =﹣
          ∴c=3,
          ∴b=c+2=5,a=c+4=7.
          ∴這個(gè)三角形的周長(zhǎng)=3+5+7=15.
          故選:C.
          設(shè)三角形的三邊分別為a、b、c,且a>b>c>0,由于公差為d=2,三個(gè)角分別為、A、B、C,則a﹣b=b﹣c=2,a=c+4,b=c+2,因?yàn)閟inA= ,所以A=60°或120°.若A=60°,因?yàn)槿龡l邊不相等,則必有角大于A,矛盾,故A=120°.由余弦定理能求出三邊長(zhǎng),從而得到這個(gè)三角形的周長(zhǎng).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

          設(shè)農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

          1求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

          2若選取的是12月1日12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=bx+a;

          3若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(2)中所得的線性回歸方程是否可靠?

          (注:,)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】命題p:關(guān)于x的方程x2+ax+2=0無(wú)實(shí)根,命題q:函數(shù)f(x)=logax在(0,+∞)上單調(diào)遞增,若“p∧q”為假命題,“p∨q”真命題,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知直線的參數(shù)方程為 (為參數(shù)),曲線的極坐標(biāo)方程為,直線與曲線交于兩點(diǎn),與軸交于點(diǎn).

          (1)求直線的普通方程和曲線的直角坐標(biāo)方程;

          (2)求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在△ABC中,已知AB=2,cosB= (Ⅰ)若AC=2 ,求sinC的值;
          (Ⅱ)若點(diǎn)D在邊AC上,且AD=2DC,BD= ,求BC的長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù).

          (Ⅰ)討論的單調(diào)性;

          (Ⅱ)設(shè)).對(duì)任意,,都有,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】【選做題】

          A.[選修4-1:幾何證明選講]

          如圖,四邊形是圓的內(nèi)接四邊形, , 的延長(zhǎng)線交的延長(zhǎng)線于點(diǎn).

          求證: 平分.

          B.[選修4-2:矩陣與變換]

          已知變換 ,試寫(xiě)出變換對(duì)應(yīng)的矩陣,并求出其逆矩陣.

          C.[選修4-4:坐標(biāo)系與參數(shù)方程]

          在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)).若直線與曲線相交于兩點(diǎn),求線段的長(zhǎng).

          D.[選修4-5:不等式選講]

          設(shè)均為正數(shù),且,求證 .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某建材公司在,兩地各有一家工廠,它們生產(chǎn)的建材由公司直接運(yùn)往地.由于土路交通運(yùn)輸不便,為了減少運(yùn)費(fèi),該公司預(yù)備投資修建一條從地或地直達(dá)地的公路;若選擇從某地修建公路,則另外一地生產(chǎn)的建材可先運(yùn)輸至該地再運(yùn)至以節(jié)約費(fèi)用.已知,之間為土路,土路運(yùn)費(fèi)為每噸千米20元,公路的運(yùn)費(fèi)減半,,,三地距離如圖所示.為了制定修路計(jì)劃,公司統(tǒng)計(jì)了最近10天兩個(gè)工廠每天的建材產(chǎn)量,得到下面的柱形圖,以兩個(gè)工廠在最近10天日產(chǎn)量的頻率代替日產(chǎn)量的概率.

          (1)求“,兩地工廠某天的總?cè)债a(chǎn)量為20噸”的概率;

          (2)以修路后每天總的運(yùn)費(fèi)的期望為依據(jù),判斷從哪一地修路更加劃算.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓E: 的右焦點(diǎn)為F(3,0),過(guò)點(diǎn)F的直線交橢圓E于A、B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,﹣1),則E的方程為(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案