在極坐標(biāo)系中,圓

在點(diǎn)

處的切線的極坐標(biāo)方程為
.
試題分析:∵

,∴

,∴

,由圖象可知在M(2,0)處的切線為

,即

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知曲線

的極坐標(biāo)方程是

,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為

軸的正半軸,建立平面直角坐標(biāo)系,曲線

的參數(shù)方程是:

(

是參數(shù)).
(1)將曲線

和曲線

的方程轉(zhuǎn)化為普通方程;
(2)若曲線

與曲線

相交于

兩點(diǎn),求證

;
(3)設(shè)直線

交于兩點(diǎn)

,且

(

且

為常數(shù)),過(guò)弦

的中點(diǎn)

作平行于

軸的直線交曲線

于點(diǎn)

,求證:

的面積是定值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知曲線

的參數(shù)方程是

(

為參數(shù)),以坐標(biāo)原點(diǎn)

為極點(diǎn),

軸的正半軸為極軸建立極坐標(biāo)系,曲線

的極坐標(biāo)方程是

.
(1)寫(xiě)出

的極坐標(biāo)方程和

的直角坐標(biāo)方程;
(2)已知點(diǎn)

、

的極坐標(biāo)分別是

、

,直線

與曲線

相交于

、

兩點(diǎn),射線

與曲線

相交于點(diǎn)

,射線

與曲線

相交于點(diǎn)

,求

的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
設(shè)過(guò)原點(diǎn)

的直線與圓

:

的一個(gè)交點(diǎn)為

,點(diǎn)

為線段

的中點(diǎn)。
(1)求圓

的極坐標(biāo)方程;
(2)求點(diǎn)

軌跡的極坐標(biāo)方程,并說(shuō)明它是什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知直線l的參數(shù)方程:

(t為參數(shù))和圓C的極坐標(biāo)方程:ρ=2

sin(θ+

),判斷直線和圓C的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
在極坐標(biāo)系中,圓

:

上到直線

:

距離為1的點(diǎn)的個(gè)數(shù)為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
在極坐標(biāo)系中,圓

的圓心到直線

的距離是
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知曲線
C的極坐標(biāo)方程為
ρ=4cos
θ,以極點(diǎn)為原點(diǎn),極軸為
x軸正半軸建立平面直角坐標(biāo)系,設(shè)直線
l的參數(shù)方程為

(
t為參數(shù)).
(1)求曲線
C的直角坐標(biāo)方程與直線
l的普通方程;
(2)設(shè)曲線
C與直線
l相交于
P,
Q兩點(diǎn),以
PQ為一條邊作曲線
C的內(nèi)接矩形,求該矩形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
已知直線的極坐標(biāo)方程為

,則點(diǎn)(0,0)到這條直線的距離是
.
查看答案和解析>>