日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 定義在實(shí)數(shù)集R上的偶函數(shù)f(x)的最小值為3,且當(dāng)x≥0時,f(x)=3ex+a,其中e是自然對數(shù)的底數(shù).
          (1)求函數(shù)f(x)的解析式.(2)求最大的整數(shù)m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤3ex.
          【答案】分析:(1)由y=ex是增函數(shù),得知f(x)也是(0,+∞)上增函數(shù),再由f(x)為偶函數(shù),則f(x)在(-∞,0)上是減函數(shù),從而當(dāng)x=0時有最小值求得a值,然后利用偶函數(shù)求對稱區(qū)間上的解析式即可.
          (2)先假設(shè)當(dāng)x∈[1,m]時,存在t∈R,有f(x+t)≤3ex,則有f(1+t)≤3e,下面要選擇解析式,所以要分1+t≥0時和1+t≤0時兩種情況得t的范圍,同樣地,有f(m+t)≤3em及m≥2,得em+t≤em轉(zhuǎn)化為由t的存在性可知,上述不等式在[-2,0]上必有解,只要求得et在[-2,0]上的最小值可即可.
          解答:解:(1)∵y=ex是增函數(shù),∴當(dāng)x≥0時,f(x)為增函數(shù),又f(x)為偶函數(shù),∴f(x)min=f(0)=3+a,∴3+a=3.∴a=0
          當(dāng)x<0時,∵-x>0∴f(x)=f(-x)=3e-x
          綜上,
          (2)當(dāng)x∈[1,m]時,有f(x+t)≤3ex,∴f(1+t)≤3e
          當(dāng)1+t≥0時,3e1+t≤3e即e1+t≤e,1+t≤1,∵-1≤t≤0
          當(dāng)1+t≤0時,同理,-2≤t≤-1,∴-2≤t≤0
          同樣地,f(m+t)≤3em及m≥2,得em+t≤em∴
          由t的存在性可知,上述不等式在[-2,0]上必有解.
          ∵et在[-2,0]上的最小值為e-2,∵,即em-e3m≤0①
          令g(x)=ex-e3x,x∈[2,+∞).
          則g'(x)=ex-e3由g'(x)=0得x=3
          當(dāng)2≤x<3時,g'(x)<0,g(x)是減函數(shù);當(dāng)x>3時,g'(x)>0,g(x)是增函數(shù)
          ∴g(x)的最小值是g(3)=e3-3e3=-2e3<0,
          又g(2)<0,g(4)<0,g(5)>0,
          ∴g(x)=0在[2,+∞)上有唯一解m∈(4,5).
          當(dāng)2≤x≤m時,g(x)≤0,當(dāng)x>m時,g(x)>0∴在x∈[2,+∞)時滿足不等式①的最大實(shí)數(shù)解為m
          當(dāng)t=-2,x∈[1,m]時,f(x-2)-3ex=3e(e|x-2|-1-x),在x∈[1,2)時,∵e|x-2|-1=e1-x≤1∴f(x-2)-3ex≤0,在x∈[2,m]時,f(x-2)-3ex=
          綜上所述,m最大整數(shù)為4.
          點(diǎn)評:本題主要考查利用奇偶性來求對稱區(qū)間上的解析式和應(yīng)用單調(diào)性來解決恒成立問題.這類問題綜合性較強(qiáng),涉及的知識和方法較多,思路比較繁雜,解題時必須嚴(yán)格按照邏輯步驟,層層解決.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:044

          定義在實(shí)數(shù)集上的函數(shù)f(x)對任意x,yÎRf(x+y)+f(x-y)=2f(x)f(y)f(0)¹0

          1求證:f(0)=1;2求證:y=f(x)是偶涵數(shù);

          3)若存在常數(shù)c使;①求證對任意xÎRf(x+c)=-f(x)成立;②試問函數(shù)f(x)是不是周期函數(shù),如果是,找出它的一個周期;如果不是,請說明理由

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

          定義在實(shí)數(shù)集上的函數(shù)f(x)對任意xyÎRf(x+y)+f(x-y)=2f(x)f(y)f(0)¹0

          1求證:f(0)=1;2求證:y=f(x)是偶涵數(shù);

          3)若存在常數(shù)c使;①求證對任意xÎRf(x+c)=-f(x)成立;②試問函數(shù)f(x)是不是周期函數(shù),如果是,找出它的一個周期;如果不是,請說明理由

          查看答案和解析>>

          同步練習(xí)冊答案