日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 點(diǎn)P是圓x2+y2=16上的一個動點(diǎn),過點(diǎn)P作PD垂直于x軸,垂足為D,Q為線段PD的中點(diǎn).
          (1)求點(diǎn)Q的軌跡方程.
          (2)若經(jīng)過點(diǎn)(-1,1)的直線與Q點(diǎn)軌跡有兩個不同交點(diǎn),求直線斜率的取值范圍.
          分析:(1)由題意點(diǎn)P是圓x2+y2=16上的一個動點(diǎn),過點(diǎn)P作PD垂直于x軸,垂足為D,Q為線段PD的中點(diǎn),可得點(diǎn)Q的坐標(biāo)與點(diǎn)P的坐標(biāo)的關(guān)系,用中點(diǎn)Q的坐標(biāo)表示出點(diǎn)P的坐標(biāo),然后再代入圓的方程求出點(diǎn)Q的軌跡方程
          (2)由(1)點(diǎn)Q的軌跡是一個橢圓,由于點(diǎn)(-1,1)在橢圓的內(nèi)部,過點(diǎn)(-1,1)的直線與橢圓一定有兩個交點(diǎn),故可得k∈R
          解答:解:由題意,令Q(x,y),P(s,t),
          由于點(diǎn)P是圓x2+y2=16上的一個動點(diǎn),過點(diǎn)P作PD垂直于x軸,垂足為D,Q為線段PD的中點(diǎn)
          ∴s=x,t=2y,又點(diǎn)P是圓x2+y2=16上的一個動點(diǎn)
          ∴x2+4y2=16,即為點(diǎn)Q的軌跡方程
          (2)由(1)點(diǎn)Q的軌跡是橢圓
          x2
          16
          +
          y2
          4
          =1

          由于點(diǎn)(-1,1)一定在橢圓內(nèi),故過點(diǎn)點(diǎn)的直線一定與橢圓有兩個交點(diǎn)
          所以此直線的斜率的取值范圍是R
          點(diǎn)評:本題考查直線與圓方程的應(yīng)用,解答本題關(guān)鍵點(diǎn)有二,一是熟練掌握代入法求軌跡方程,二是確定點(diǎn)(-1,1)在橢圓的內(nèi)部,從而判斷出直線斜率的取值范圍,本題考查了推理判斷的能力及代入法求軌跡方程技巧.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知點(diǎn)P是圓x2+y2=4上一動點(diǎn),定點(diǎn)Q(4,0).
          (1)求線段PQ中點(diǎn)的軌跡方程;
          (2)設(shè)∠POQ的平分線交PQ于R,求R點(diǎn)的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知點(diǎn)P是圓x2+y2=1上的一個動點(diǎn),過點(diǎn)P作PQ⊥x軸于點(diǎn)Q,設(shè)
          OM
          =
          OP
          +
          OQ

          (1)求點(diǎn)M的軌跡方程
          (2)求向量
          OP
          OM
          夾角的最大值,并求此時P點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知點(diǎn)P是圓x2+y2=1上任意一點(diǎn),過點(diǎn)P作y軸的垂線,垂足為Q,點(diǎn)R滿足
          RQ
          =
          3
          PQ
          ,記點(diǎn)R的軌跡為曲線C.
          (Ⅰ)求曲線C的方程;
          (Ⅱ)設(shè)A(0,1),點(diǎn)M、N在曲線C上,且直線AM與直線AN的斜率之積為
          2
          3
          ,求△AMN的面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (理科)已知兩點(diǎn)A(0,-3),B(4,0),若點(diǎn)P是圓x2+y2-2y=0上的動點(diǎn),則△ABP面積的最小值為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的右焦點(diǎn)F(
          3
          ,0
          ),長軸長為4.
          (1)求橢圓C的方程,
          (2)點(diǎn)P是圓x2+y2=b2上第一象限內(nèi)的任意一點(diǎn),過P作圓的切線與橢圓C交于Q(x1,y1),R(x2,y2)(y1>y2)兩點(diǎn).①求證:|PQ|+|FQ|=2.②求|QR|的最大值.

          查看答案和解析>>

          同步練習(xí)冊答案