日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=lg(x2-2ax+a).
          (1)若f(x)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍;
          (2)若f(x)的值域?yàn)镽,求實(shí)數(shù)a的取值范圍,并求f(x)定義域.
          分析:(1)函數(shù)f(x)的定義域是使對(duì)數(shù)的真數(shù)有意義x的取值范圍,故函數(shù)定義域?yàn)镽等價(jià)于真數(shù)對(duì)應(yīng)的二次函數(shù)取值恒大于零,由此不難列出根的判別式小于0,從而得到實(shí)數(shù)a的取值范圍.
          (2)函數(shù)f(x)的值域?yàn)镽,說明對(duì)數(shù)的真數(shù)取到所有的正數(shù),由此可得(0,+∞)包含于真數(shù)對(duì)應(yīng)二次函數(shù)的值,由此可得根的判別大于或等于0,從而得到實(shí)數(shù)a的取值范圍.
          解答:解:(1)要使x2-2ax+a>0恒成立,只要△=4a2-4a<0,---------------(2分)
          得0<a<1.------------------------------------------------------------(4分)
          (2)要使函數(shù)的值域是R,只要△=4a2-4a≥0,得a≤0或a≥1.------(8分)
          這時(shí)由x2-2ax+a>0得 x<a-
          a2-a
          x>a+
          a2-a
          ,-------(10分)
          所以這時(shí)f(x)定義域是(-∞, a-
          a2-a
           )∪( a+
          a2-a
          , +∞)
          .-------(12分)
          點(diǎn)評(píng):本題著重考查了對(duì)數(shù)型函數(shù)的定義域和值域、函數(shù)的圖象與性質(zhì)等知識(shí)點(diǎn),屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=2x-2+ae-x(a∈R)
          (1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
          (2)當(dāng)a=1時(shí),若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2+2|lnx-1|.
          (1)求函數(shù)y=f(x)的最小值;
          (2)證明:對(duì)任意x∈[1,+∞),lnx≥
          2(x-1)
          x+1
          恒成立;
          (3)對(duì)于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
          x1+x2
          2
          時(shí),又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時(shí),對(duì)于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
          1
          f(n)
          }的前n項(xiàng)和為Sn,則S2012的值為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=xlnx
          (Ⅰ)求函數(shù)f(x)的極值點(diǎn);
          (Ⅱ)若直線l過點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          3
          x
          a
          +
          3
          (a-1)
          x
          ,a≠0且a≠1.
          (1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
          (2)已知當(dāng)x>0時(shí),函數(shù)在(0,
          6
          )上單調(diào)遞減,在(
          6
          ,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
          (3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點(diǎn)的直線l,使得l為曲線C的對(duì)稱軸?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案