. (本題滿分15分)已知點(diǎn),
為一個(gè)動(dòng)點(diǎn),且直線
的斜率之積為
(I)求動(dòng)點(diǎn)的軌跡
的方程;
(II)設(shè),過點(diǎn)
的直線
交
于
兩點(diǎn),
的面積記為S,若對(duì)滿足條件的任意直線
,不等式
的最小值。
(I)(II)
解析試題分析:(I)設(shè)動(dòng)點(diǎn)P的坐標(biāo)為
由條件得 即
所以動(dòng)點(diǎn)的軌跡
的方程為
……6分
(II)設(shè)點(diǎn)的坐標(biāo)分別是
當(dāng)直線
所以
所以
當(dāng)直線
由 ……8分
所以
所以
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/41/2/xqjd9.png" style="vertical-align:middle;" />
所以
綜上所述 ……12分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/dd/0/1tdyp4.png" style="vertical-align:middle;" />恒成立
即恒成立
由于所以
所以恒成立,所以
……15分
考點(diǎn):本小題主要考查軌跡方程的求法、直線與橢圓的位置關(guān)系、向量的運(yùn)算和恒成立問題,考查學(xué)生運(yùn)算求解的基本技能、推理論證能力和數(shù)形結(jié)合思想.
點(diǎn)評(píng):這是一道直線與圓錐曲線的綜合題目,求軌跡方程時(shí),不要忘記限制條件;設(shè)直線方程時(shí),不要忘記考慮斜率存在與不存在兩種可能,總之思路一定要細(xì)致,解題步驟一定要嚴(yán)謹(jǐn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線過點(diǎn)
.
(I)求拋物線的方程;
(II)已知圓心在軸上的圓
過點(diǎn)
,且圓
在點(diǎn)
的切線恰是拋物線在點(diǎn)
的切線,求圓
的方程;
(Ⅲ)如圖,點(diǎn)為
軸上一點(diǎn),點(diǎn)
是點(diǎn)
關(guān)于原點(diǎn)的對(duì)稱點(diǎn),過點(diǎn)
作一條直線與拋物線交于
兩點(diǎn),若
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
點(diǎn)P是圓上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PD垂直于
軸,垂足為D,Q為線段PD的中點(diǎn)。
(1)求點(diǎn)Q的軌跡方程。
(2)已知點(diǎn)M(1,1)為上述所求方程的圖形內(nèi)一點(diǎn),過點(diǎn)M作弦AB,若點(diǎn)M恰為弦AB的中點(diǎn),求直線AB的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知橢圓,過點(diǎn)(m,0)作圓
的切線
交橢圓G于A,B兩點(diǎn).
(1)求橢圓G的焦點(diǎn)坐標(biāo)和離心率;
(2)將表示為m的函數(shù),并求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知橢圓的一個(gè)焦點(diǎn)
與拋物線
的焦點(diǎn)重合,P為橢圓與拋物線的一個(gè)公共點(diǎn),且|PF|=2,傾斜角為
的直線
過點(diǎn)
.
(1)求橢圓的方程;
(2)設(shè)橢圓的另一個(gè)焦點(diǎn)為,問拋物線
上是否存在一點(diǎn)
,使得
與
關(guān)于直線
對(duì)稱,若存在,求出點(diǎn)
的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)(理科)已知橢圓,過焦點(diǎn)且垂直于長軸的弦長為1,且焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成等邊三角形.
(1)求橢圓的方程;
(2)過點(diǎn)的直線
交橢圓于
兩點(diǎn),交直線
于點(diǎn)
,且
,
,
求證:為定值,并計(jì)算出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)如圖,橢圓:
的左焦點(diǎn)為
,右焦點(diǎn)為
,離心率
.過
的直線交橢圓于
兩點(diǎn),且△
的周長為
.
(Ⅰ)求橢圓的方程.
(Ⅱ)設(shè)動(dòng)直線:
與橢圓
有且只有一個(gè)公共點(diǎn)
,且與直線
相交于點(diǎn)
.試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn)
,使得以
為直徑的圓恒過點(diǎn)
?若存在,求出點(diǎn)
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知直線上有一個(gè)動(dòng)點(diǎn)
,過點(diǎn)
作直線
垂直于
軸,動(dòng)點(diǎn)
在
上,且滿足
(
為坐標(biāo)原點(diǎn)),記點(diǎn)
的軌跡為
.
(1)求曲線的方程;
(2)若直線是曲線
的一條切線, 當(dāng)點(diǎn)
到直線
的距離最短時(shí),求直線
的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com