日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】我們稱一個(gè)非負(fù)整數(shù)集合(非空)為好集合,若對(duì)任意,或者,或者.以下記的元素個(gè)數(shù).

          給出所有的元素均小于的好集合;(給出結(jié)論即可)

          求出所有滿足的好集合;(同時(shí)說明理由)

          若好集合滿足,求證: 中存在元素,使得中所有元素均為的整數(shù)倍.

          【答案】.Ⅱ)見解析;.Ⅲ)見解析.

          【解析】試題分析:(1根據(jù)題意得到集合為;(2設(shè),其中,則由題意: ,,,根據(jù)題干中的條件限制元素特性,進(jìn)而找到滿足條件的好集合;(3通過歸納可得到結(jié)果.

          解析:

          .

          Ⅱ)設(shè),其中,則由題意: ,,.

          考慮,可知,所以.

          ,則考慮,由于,所以,因此.

          所以.但此時(shí)考慮,,不滿足題意.

          ,此時(shí)滿足題意.

          所以,其中為相異正整數(shù).

          Ⅲ)記,.

          首先, .設(shè),其中.

          分別考慮和其他任一元素,由題意可得也在.

          ,

          所以,所以.

          對(duì)于,考慮,其和大于,故其差.

          特別的, ,所以.

          ,,所以,

          通過歸納可得: .

          所以,此時(shí).得證.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的左右焦點(diǎn)分別為,過任作一條與坐標(biāo)軸都不垂直的直線,與交于兩點(diǎn),且的周長(zhǎng)為.當(dāng)直線的斜率為時(shí),軸垂直

          (1)求橢圓的方程

          (2)若是該橢圓上位于第一象限的一點(diǎn),過作圓的切線,切點(diǎn)為,求的值;

          (3)設(shè)為定點(diǎn),直線過點(diǎn)軸交于點(diǎn),且與橢圓交于兩點(diǎn),設(shè),,求的值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù),)的部分圖象如圖中實(shí)線所示,圖中圓C的圖象交于MN兩點(diǎn),且My軸上,則下列說法中正確的是(

          A.函數(shù)的最小正周期是2π

          B.函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱

          C.函數(shù)單調(diào)遞增

          D.將函數(shù)的圖象向左平移后得到的關(guān)于y軸對(duì)稱

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】新冠肺炎疫情期間,為了減少外出聚集,“線上買菜”受追捧.某電商平臺(tái)在地區(qū)隨機(jī)抽取了位居民進(jìn)行調(diào)研,獲得了他們每個(gè)人近七天“線上買菜”消費(fèi)總金額(單位:元),整理得到如圖所示頻率分布直方圖.

          1)求的值;

          2)從“線上買菜”消費(fèi)總金額不低于元的被調(diào)研居民中,隨機(jī)抽取位給予獎(jiǎng)品,求這位“線上買菜”消費(fèi)總金額均低于元的概率;

          3)若地區(qū)有萬居民,該平臺(tái)為了促進(jìn)消費(fèi),擬對(duì)消費(fèi)總金額不到平均水平一半的居民投放每人元的電子補(bǔ)貼.假設(shè)每組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,試根據(jù)上述頻率分布直方圖,估計(jì)該平臺(tái)在地區(qū)擬投放的電子補(bǔ)貼總金額.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】從某單位45名職工中隨機(jī)抽取5名職工參加一項(xiàng)社區(qū)服務(wù)活動(dòng),用隨機(jī)數(shù)法確定這5名職工現(xiàn)將隨機(jī)數(shù)表摘錄部分如下:

          從隨機(jī)數(shù)表第一行的第5列和第6列數(shù)字開始由左到右依次選取兩個(gè)數(shù)字,則選出的第5個(gè)職工的編號(hào)為

          A.23B.37C.35D.17

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】點(diǎn)是函數(shù)的圖象的一個(gè)對(duì)稱中心,且點(diǎn)到該圖象的對(duì)稱軸的距離的最小值為.

          的最小正周期是

          的值域?yàn)?/span>;

          的初相

          上單調(diào)遞增.

          以上說法正確的個(gè)數(shù)是( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,點(diǎn),圓,點(diǎn)是圓上一動(dòng)點(diǎn),線段的中垂線與線段交于點(diǎn).

          1)求動(dòng)點(diǎn)的軌跡的方程;

          2)若直線與曲線相交于兩點(diǎn),且存在點(diǎn)(其中不共線),使得軸平分,證明:直線過定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在三角形內(nèi),我們將三條邊的中線的交點(diǎn)稱為三角形的重心,且重心到任一頂點(diǎn)的距離是到對(duì)邊中點(diǎn)距離的兩倍類比上述結(jié)論:在三棱錐中,我們將頂點(diǎn)與對(duì)面重心的連線段稱為三棱錐的“中線”,將三棱錐四條中線的交點(diǎn)稱為它的“重心”,則棱錐重心到頂點(diǎn)的距離是到對(duì)面重心距離的______

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線的焦點(diǎn)曲線的一個(gè)焦點(diǎn), 為坐標(biāo)原點(diǎn),點(diǎn)為拋物線上任意一點(diǎn),過點(diǎn)軸的平行線交拋物線的準(zhǔn)線于,直線交拋物線于點(diǎn).

          (Ⅰ)求拋物線的方程;

          (Ⅱ)求證:直線過定點(diǎn),并求出此定點(diǎn)的坐標(biāo).

          【答案】I;(II證明見解析.

          【解析】試題分析:(Ⅰ)將曲線化為標(biāo)準(zhǔn)方程,可求得的焦點(diǎn)坐標(biāo)分別為,可得,所以,即拋物線的方程為;(Ⅱ)結(jié)合(Ⅰ),可設(shè),得,從而直線的方程為,聯(lián)立直線與拋物線方程得,解得,直線的方程為,整理得的方程為,此時(shí)直線恒過定點(diǎn).

          試題解析:由曲線,化為標(biāo)準(zhǔn)方程可得, 所以曲線是焦點(diǎn)在軸上的雙曲線,其中,故, 的焦點(diǎn)坐標(biāo)分別為,因?yàn)閽佄锞的焦點(diǎn)坐標(biāo)為,由題意知,所以,即拋物線的方程為.

          )由()知拋物線的準(zhǔn)線方程為,設(shè),顯然.故,從而直線的方程為,聯(lián)立直線與拋物線方程得,解得

          當(dāng),即時(shí),直線的方程為,

          當(dāng),即時(shí),直線的方程為,整理得的方程為,此時(shí)直線恒過定點(diǎn), 也在直線的方程為上,故直線的方程恒過定點(diǎn).

          型】解答
          結(jié)束】
          21

          【題目】已知函數(shù)

          (Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)遞減區(qū)間;

          (Ⅱ)若時(shí),關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍;

          (Ⅲ)若數(shù)列滿足, ,記的前項(xiàng)和為,求證: .

          查看答案和解析>>

          同步練習(xí)冊(cè)答案