【題目】 據(jù)觀測(cè)統(tǒng)計(jì),某濕地公園某種珍稀鳥類的現(xiàn)有個(gè)數(shù)約只,并以平均每年
的速度增加.
(1)求兩年后這種珍稀鳥類的大約個(gè)數(shù);
(2)寫出(珍稀鳥類的個(gè)數(shù))關(guān)于
(經(jīng)過的年數(shù))的函數(shù)關(guān)系式;
(3)約經(jīng)過多少年以后,這種鳥類的個(gè)數(shù)達(dá)到現(xiàn)有個(gè)數(shù)的倍或以上?(結(jié)果為整數(shù))(參考數(shù)據(jù):
,
)
【答案】(1)1166個(gè);(2),
(3)15年
【解析】
(1)根據(jù)題意求出一年后的只數(shù),再求出兩年后的只數(shù)即可;
(2)根據(jù)珍稀鳥類的現(xiàn)有個(gè)數(shù)約只,并以平均每年
的速度增加,列出函數(shù)關(guān)系即可;
(3)由題意得到不等式,化簡(jiǎn)得到
,利用對(duì)數(shù)運(yùn)算的性質(zhì),化簡(jiǎn)即可求解.
解:(1)依題意,一年后這種鳥類的個(gè)數(shù)為
兩年后這種鳥類的個(gè)數(shù)為
(2)由題意可知珍稀鳥類的現(xiàn)有個(gè)數(shù)約只,并以平均每年
的速度增加
則所求的函數(shù)關(guān)系式為,
(3)令,得:
兩邊取常用對(duì)數(shù)得:
,即
考慮到,故
,故
因?yàn)?/span>
所以
約經(jīng)過15年以后,這種鳥類的個(gè)數(shù)達(dá)到現(xiàn)有個(gè)數(shù)的倍或以上
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年某開發(fā)區(qū)一家汽車生產(chǎn)企業(yè)計(jì)劃引進(jìn)一批新能源汽車制造設(shè)備,通過市場(chǎng)分析,全年需投入固定成本3000萬(wàn)元,每生產(chǎn)x(百輛),需另投入成本萬(wàn)元,且
,由市場(chǎng)調(diào)研知,每輛車售價(jià)6萬(wàn)元,且全年內(nèi)生產(chǎn)的車輛當(dāng)年能全部銷售完.
(1)求出2019年的利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤(rùn)=銷售額
成本)
(2)2019年產(chǎn)量為多少(百輛)時(shí),企業(yè)所獲利潤(rùn)最大?并求出最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
,且
).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在
上的最大值.
【答案】(Ⅰ)的單調(diào)增區(qū)間為
,單調(diào)減區(qū)間為
.(Ⅱ)當(dāng)
時(shí),
;當(dāng)
時(shí),
.
【解析】【試題分析】(I)利用的二階導(dǎo)數(shù)來研究求得函數(shù)
的單調(diào)區(qū)間.(II) 由(Ⅰ)得
在
上單調(diào)遞減,在
上單調(diào)遞增,由此可知
.利用導(dǎo)數(shù)和對(duì)
分類討論求得函數(shù)在
不同取值時(shí)的最大值.
【試題解析】
(Ⅰ),
設(shè)
,則
.
∵,
,∴
在
上單調(diào)遞增,
從而得在
上單調(diào)遞增,又∵
,
∴當(dāng)時(shí),
,當(dāng)
時(shí),
,
因此, 的單調(diào)增區(qū)間為
,單調(diào)減區(qū)間為
.
(Ⅱ)由(Ⅰ)得在
上單調(diào)遞減,在
上單調(diào)遞增,
由此可知.
∵,
,
∴.
設(shè),
則
.
∵當(dāng)時(shí),
,∴
在
上單調(diào)遞增.
又∵,∴當(dāng)
時(shí),
;當(dāng)
時(shí),
.
①當(dāng)時(shí),
,即
,這時(shí),
;
②當(dāng)時(shí),
,即
,這時(shí),
.
綜上, 在
上的最大值為:當(dāng)
時(shí),
;
當(dāng)時(shí),
.
[點(diǎn)睛]本小題主要考查函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)求最大值. 與函數(shù)零點(diǎn)有關(guān)的參數(shù)范圍問題,往往利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點(diǎn),并結(jié)合特殊點(diǎn),從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關(guān)系,進(jìn)而確定參數(shù)的取值范圍;或通過對(duì)方程等價(jià)變形轉(zhuǎn)化為兩個(gè)函數(shù)圖象的交點(diǎn)問題.
【題型】解答題
【結(jié)束】
22
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,圓
的普通方程為
. 在以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
.
(Ⅰ) 寫出圓 的參數(shù)方程和直線
的直角坐標(biāo)方程;
( Ⅱ ) 設(shè)直線 與
軸和
軸的交點(diǎn)分別為
,
為圓
上的任意一點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論函數(shù)在
內(nèi)的單調(diào)性;
(Ⅱ)若存在正數(shù),對(duì)于任意的
,不等式
恒成立,求正實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,圓
的普通方程為
. 在以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
.
(Ⅰ) 寫出圓 的參數(shù)方程和直線
的直角坐標(biāo)方程;
( Ⅱ ) 設(shè)直線 與
軸和
軸的交點(diǎn)分別為
,
為圓
上的任意一點(diǎn),求
的取值范圍.
【答案】(1);
.
(2).
【解析】【試題分析】(I)利用圓心和半徑,寫出圓的參數(shù)方程,將圓的極坐標(biāo)方程展開后化簡(jiǎn)得直角坐標(biāo)方程.(II)求得兩點(diǎn)的坐標(biāo), 設(shè)點(diǎn)
,代入向量
,利用三角函數(shù)的值域來求得取值范圍.
【試題解析】
(Ⅰ)圓的參數(shù)方程為
(
為參數(shù)).
直線的直角坐標(biāo)方程為
.
(Ⅱ)由直線的方程
可得點(diǎn)
,點(diǎn)
.
設(shè)點(diǎn),則
.
.
由(Ⅰ)知,則
.
因?yàn)?/span>,所以
.
【題型】解答題
【結(jié)束】
23
【題目】選修4-5:不等式選講
已知函數(shù),
.
(Ⅰ)若對(duì)于任意,
都滿足
,求
的值;
(Ⅱ)若存在,使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,命題
方程
表示焦點(diǎn)在
軸上的橢圓,命題
方程
表示雙曲線.
(1)若命題是真命題,求實(shí)數(shù)
的范圍;
(2)若命題“或
”為真命題,“
且
”是假命題,求實(shí)數(shù)
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人在微信群中發(fā)了一個(gè)8元“拼手氣”紅包,被甲、乙、丙三人搶完,若三人均領(lǐng)到整數(shù)元,且每人至少領(lǐng)到1元,則甲領(lǐng)到的錢數(shù)不少于其他任何人的概率為
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有一組圓.下列四個(gè)命題正確的是( )
A. 存在,使圓與
軸相切
B. 存在一條直線與所有的圓均相交
C. 存在一條直線與所有的圓均不相交
D. 所有的圓均不經(jīng)過原點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品所得的利潤(rùn)分別為和
(萬(wàn)元),事先根據(jù)相關(guān)資料得出它們與投入資金
(萬(wàn)元)的數(shù)據(jù)分別如下表和圖所示:其中已知甲的利潤(rùn)模型為
,乙的利潤(rùn)模型為
.(
為參數(shù),且
).
(1)請(qǐng)根據(jù)下表與圖中數(shù)據(jù),分別求出甲、乙兩種產(chǎn)品所得的利潤(rùn)與投入資金(萬(wàn)元)的函數(shù)模型
(2)今將萬(wàn)資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對(duì)甲、乙兩種產(chǎn)品的投入資金都不低于
萬(wàn)元.設(shè)對(duì)乙種產(chǎn)品投入資金
(萬(wàn)元),并設(shè)總利潤(rùn)為
(萬(wàn)元),如何分配投入資金,才能使總利潤(rùn)最大?并求出最大總利潤(rùn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com