日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)fx)=(kx+ex2x,若fx)<0的解集中有且只有一個正整數(shù),則實數(shù)k的取值范圍為 (  )

          A. [ ,B. ,]

          C. [D. [

          【答案】A

          【解析】

          fx)<0轉(zhuǎn)化為(kx+ex2x,即kx+ ,令gx)=,利用導數(shù)研究gx)的單調(diào)性,數(shù)形結(jié)合得答案.

          fx)<0,得(kx+ex2x,即kx+,令gx)=,則g′(x)=,當x(﹣∞,1)時,g′(x)>0,當x1,+∞)時,g′(x)<0.∴gx)在(﹣∞,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減.作出函數(shù)gx)與ykx+的圖象如圖:ykx+的圖象過定點P0,),A1,),B2,),∵ ,.∴實數(shù)k的取值范圍為[ ).

          故選:A

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】在直角坐標系中,橢圓的方程為,左右焦點分別為,,為短軸的一個端點,且的面積為.設過原點的直線與橢圓交于兩點,為橢圓上異于的一點,且直線,的斜率都存在,.

          (1)求的值;

          (2)設為橢圓上位于軸上方的一點,且軸,為曲線上不同于的兩點,且,設直線軸交于點,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知,.

          (1)當時,求函數(shù)圖象在處的切線方程;

          (2)若對任意,不等式恒成立,求的取值范圍;

          (3)若存在極大值和極小值,且極大值小于極小值,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知拋物線過點,過點作直線與拋物線交于不同兩點、,過軸的垂線分別與直線交于點、,其中為坐標原點.

          1)求拋物線的方程;

          2)寫出拋物線的焦點坐標和準線方程;

          3)求證:為線段的中點.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù) .

          (1)當時,討論函數(shù)的單調(diào)性;

          (2)若,求證:.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】數(shù)學中有許多形狀優(yōu)美、寓意美好的曲線,曲線C就是其中之一(如圖).給出下列三個結(jié)論:

          ①曲線C恰好經(jīng)過6個整點(即橫、縱坐標均為整數(shù)的點);

          ②曲線C上任意一點到原點的距離都不超過;

          ③曲線C所圍成的“心形”區(qū)域的面積小于3.

          其中,所有正確結(jié)論的序號是

          A. B. C. ①②D. ①②③

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓的左.右焦點分別為,為坐標原點.

          (1)若斜率為的直線交橢圓于點,若線段的中點為,直線的斜率為,求的值;

          (2)已知點是橢圓上異于橢圓頂點的一點,延長直線分別與橢圓交于點,設直線的斜率為,直線的斜率為,求證:為定值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù).

          (1)若在區(qū)間上不是單調(diào)函數(shù),求實數(shù)的范圍;

          (2)若對任意,都有恒成立,求實數(shù)的取值范圍;

          (3)當時,設,對任意給定的正實數(shù),曲線上是否存在兩點,,使得是以為坐標原點)為直角頂點的直角三角形,而且此三角形斜邊中點在軸上?請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖所示:在五面體ABCDEF中,四邊形EDCF是正方形,AD=DE=1,∠ADE=90°,∠ADC=∠DCB=120°.

          (Ⅰ)求證:平面ABCD⊥平面EDCF;

          (Ⅱ)求三棱錐A-BDF的體積.

          查看答案和解析>>

          同步練習冊答案