日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)f(x)=3x-x2,則在下列區(qū)間中,使函數(shù)f(x)有零點的區(qū)間是( 。
          A、[0,1]B、[1,2]C、[-2,-1]D、[-1,0]
          分析:令f(x)=3x-x2=0,得3x=x2,分別作出函數(shù)y=3x,t=x2的圖象

          觀察圖象的交點所在區(qū)間即可.
          解答:精英家教網(wǎng)解:∵f(-1)=3-1-(-1)2=
          1
          3
          -1=-
          2
          3
          <0,
          f(0)=30-02=1>0,
          ∴f(-1)•f(0)<0,∴有零點的區(qū)間是[-1,0].
          【答案】D
          點評:二分法是求方程根的一種基本算法,其理論依據(jù)是零點存在定理:一般地,若函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是一條不間斷的曲線,且f(a)f(b)<0,則函數(shù)y=f(x)在區(qū)間(a,b)上有零點.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)的定義域為(0,+∞),對于任意正實數(shù)m,n恒有f(m•n)=f(m)+f(n),且當(dāng)x>1時,f(x)>0,f(
          1
          2
          )=-1

          (1)求f(2)的值;
          (2)求證:f(x)在(0,+∞)上是增函數(shù);
          (3)解關(guān)于x的不等式f(x)≥2+f(
          3
          x-4
          )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f 1(x)=|3x-1|,f2(x)=|a•3x-9|(a>0),x∈R,且f(x)=
          f1(x),f1(x)≤f2(x)
          f2(x),f1(x)>f2(x)

          (1)當(dāng)a=1時,求f(x)的解析式;
          (2)在(1)的條件下,若方程f(x)-m=0有4個不等的實根,求實數(shù)m的范圍;
          (3)當(dāng)2≤a<9時,設(shè)f(x)=f2(x)所對應(yīng)的自變量取值區(qū)間的長度為l(閉區(qū)間[m,n]的長度定義為n-m),試求l的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)的定義域為{x|x∈R,x≠
          k
          2
          ,k∈Z}
          ,且f(x+1)=-
          1
          f(x)
          ,f(x)為奇函數(shù),當(dāng)0<x<
          1
          2
          時,f(x)=3x
          (1)求f(
          2013
          4
          )
          ;
          (2)當(dāng)2k+
          1
          2
          <x<2k+1(k∈Z)
          時,求f(x)的表達(dá)式;
          (3)是否存在這樣的正整數(shù)k,使得當(dāng)2k+
          1
          2
          <x<2k+1(k∈Z)
          時,關(guān)于x的不等式log3f(x)>x2-kx-2k有解?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•閔行區(qū)二模)設(shè)f(x)是定義在R上的函數(shù),若f(0)=
          1
          8
          ,且對任意的x∈R,滿足f(x+2)-f(x)≤3x,f(x+4)-f(x+2)≥9×3x,則f(8)=
          6561
          8
          6561
          8

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)f(x)的定義域為(0,+∞),對于任意正實數(shù)m,n恒有f(m•n)=f(m)+f(n),且當(dāng)x>1時,f(x)>0,f(
          1
          2
          )=-1

          (1)求f(2)的值;
          (2)求證:f(x)在(0,+∞)上是增函數(shù);
          (3)解關(guān)于x的不等式f(x)≥2+f(
          3
          x-4
          )

          查看答案和解析>>

          同步練習(xí)冊答案