日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù).

          (I)若曲線與曲線在它們的交點(diǎn)處具有公共切線,求的值;

          (II)當(dāng)時(shí),若函數(shù)在區(qū)間內(nèi)恰有兩個(gè)零點(diǎn),求的取值范圍;

          (III)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值

           

          【答案】

          (I).(II) 。(Ⅲ)

          【解析】

          試題分析:(I).

          因?yàn)榍與曲線在它們的交點(diǎn)處具有公共切線,所以,且,即,且,

          解得.

          (II)記,當(dāng)時(shí),,

          ,令,得.

          當(dāng)變化時(shí),的變化情況如下表:

          0

          0

          極大值

          極小值

          所以函數(shù)的單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為,

          ①當(dāng)時(shí),即時(shí),在區(qū)間上單調(diào)遞增,所以在區(qū)間上的最大值為;

          ②當(dāng),即時(shí),在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,所以在區(qū)間上的最大值為;

          當(dāng),即時(shí),t+3<2且h(2)=h(-1),所以在區(qū)間上的最大值為;

          考點(diǎn):本題考查了導(dǎo)數(shù)的運(yùn)用

          點(diǎn)評:導(dǎo)數(shù)本身是個(gè)解決問題的工具,是高考必考內(nèi)容之一,高考往往結(jié)合函數(shù)甚至是實(shí)際問題考查導(dǎo)數(shù)的應(yīng)用,求單調(diào)、最值、完成證明等,請注意歸納常規(guī)方法和常見注意點(diǎn).

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知二次函數(shù)的導(dǎo)函數(shù)的圖像與直線平行,且=-1處取得最小值m-1(m).設(shè)函數(shù)

          (1)若曲線上的點(diǎn)P到點(diǎn)Q(0,2)的距離的最小值為,求m的值w.w.w.k.s.5.u.c.o.m        

          (2) 如何取值時(shí),函數(shù)存在零點(diǎn),并求出零點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009年廣東卷文)(本小題滿分14分)

          已知二次函數(shù)的導(dǎo)函數(shù)的圖像與直線平行,且=-1處取得最小值m-1(m).設(shè)函數(shù)

          (1)若曲線上的點(diǎn)P到點(diǎn)Q(0,2)的距離的最小值為,求m的值

          (2) 如何取值時(shí),函數(shù)存在零點(diǎn),并求出零點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本小題滿分14分)已知二次函數(shù)的導(dǎo)函數(shù)的圖像與直線平行,且=-1處取得最小值m-1(m).設(shè)函數(shù)(1)若曲線上的點(diǎn)P到點(diǎn)Q(0,2)的距離的最小值為,求m的值(2) 如何取值時(shí),函數(shù)存在零點(diǎn),并求出零點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù).

          (I)若曲線與曲線在它們的交點(diǎn)處具有公共切線,求的值;

          (II)當(dāng)時(shí),若函數(shù)在區(qū)間內(nèi)恰有兩個(gè)零點(diǎn),求的取值范圍;

          (III)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值

          查看答案和解析>>

          同步練習(xí)冊答案