日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知f0(x)=xex,f1(x)=f0(x)f2(x)=f1(x),…fn(x)=fn-1(x),n∈N*
          (1)請(qǐng)寫出fn(x)的表達(dá)式(不需要證明);
          (2)求fn(x)的極小值;
          (3)設(shè)gn(x)=-x2-2(n+1)x-8n+8,gn(x)的最大值為a,fn(x)的最小值為b,證明:a-b≥e-4
          分析:(1)由f0(x)=xex,f1(x)=f0(x),f2(x)=f1(x),…fn(x)=fn-1(x),n∈N*,知f1(x)=ex+xex=(x+1)ex,
          f2(x)=ex+(x+1)ex=(x+2)ex,f3(x)=ex+(x+3)ex,…,由此能求出fn(x)=(x+n)•ex,n∈N*
          (2)由fn(x)=(x+n)ex,知fn(x)=(x+n+1)ex,由此能求出fn(x)的極小值.
          (3)由gn(x)=-x2-2(n+1)x-8n+8,gn(x)的最大值為a,fn(x)的最小值為b,知a-b=(n-3)2+e-(n+1).令h(x)=(x-3)2+e-(x+1),(x≥0).由此能夠證明a-b≥e-4
          解答:解:(1)∵f0(x)=xex,f1(x)=f0(x),f2(x)=f1(x),…fn(x)=fn-1(x),n∈N*
          ∴f1(x)=ex+xex=(x+1)ex,
          f2(x)=ex+(x+1)ex=(x+2)ex,
          f3(x)=ex+(x+3)ex,

          ∴fn(x)=(x+n)•ex,n∈N*
          (2)∵fn(x)=(x+n)ex,
          fn(x)=(x+n+1)ex,
          ∵x>-(n+1)時(shí),fn(x)>0;x<-(n+1)時(shí),fn(x)<0,
          ∴當(dāng)x=-(n+1)時(shí),fn(x)取得極小值fn(-(n+1))=-e-(n+1)
          (3)∵gn(x)=-x2-2(n+1)x-8n+8,
          gn(x)的最大值為a,fn(x)的最小值為b,
          ∴a=gn(-(n+1))=(n-3)2,b=fn(-(n+1))=-e-(n+1)
          ∴a-b=(n-3)2+e-(n+1)
          令h(x)=(x-3)2+e-(x+1),(x≥0)
          則h′(x)=2(x-3)-e-(x+1),
          ∵h(yuǎn)′(x)在區(qū)間[0,+∞)上單調(diào)遞增,
          ∴h′(x)≥h′(0)=-6-e-1,
          ∵h(yuǎn)′(3)=-e-4<0,h′(4)=2-e-5>0,
          ∴存在x0∈(3,4),使得h′(x)=0.
          ∴0≤x≤x0時(shí),h′(x0)<0;當(dāng)x>x0時(shí),h′(x0)>0.
          即h(x)在區(qū)間[x0,+∞)上單調(diào)遞增;在區(qū)間[0,x0)音調(diào)遞減,
          ∴h(x)min=h(x0).
          ∵h(yuǎn)′(3)=-e-4<0,h′(4)=2-e-5>0,
          ∴當(dāng)n=3時(shí),a-b取得最小值e-4,
          所以a-b≥e-4
          點(diǎn)評(píng):本題考查導(dǎo)數(shù)在求最大值、最小值中的應(yīng)用,綜合性強(qiáng),難度大,有一定的探索性,對(duì)數(shù)學(xué)思想的要求較高.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•泉州模擬)已知f0(x)=x•ex,f1(x)=f′0(x),f2(x)=f′1(x),…,fn(x)=f′n-1(x)(n∈N*).
          (Ⅰ)請(qǐng)寫出fn(x)的表達(dá)式(不需證明);
          (Ⅱ)設(shè)fn(x)的極小值點(diǎn)為Pn(xn,yn),求yn
          (Ⅲ)設(shè)gn(x)=-x2-2(n+1)x-8n+8,gn(x)的最大值為a,fn(x)的最小值為b,試求a-b的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:全優(yōu)設(shè)計(jì)選修數(shù)學(xué)-1-1蘇教版 蘇教版 題型:044

          已知f0(x)=xn,fk(x)=,其中k≤n(n,k∈N+).設(shè)F(x)=f0(x2)+f1(x2)+…+fk(x2)+…+fn(x2),x∈[-1,1].

          (1)寫出fk(1);

          (2)證明:對(duì)任意的x1,x2∈[-1,1],恒有|F(x1)-F(x2)|≤2n-1(n+2)-n-1.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:泉州模擬 題型:解答題

          已知f0(x)=x•ex,f1(x)=f′0(x),f2(x)=f′1(x),…,fn(x)=f′n-1(x)(n∈N*).
          (Ⅰ)請(qǐng)寫出fn(x)的表達(dá)式(不需證明);
          (Ⅱ)設(shè)fn(x)的極小值點(diǎn)為Pn(xn,yn),求yn;
          (Ⅲ)設(shè)gn(x)=-x2-2(n+1)x-8n+8,gn(x)的最大值為a,fn(x)的最小值為b,試求a-b的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:江西省模擬題 題型:單選題

          在如圖所示的程序框圖中,已知f0(x)=x·ex,則輸出的是
          [     ]
          A.(x+2010)ex
          B.xex
          C.(1+2010x)ex
          D.2010(1+x)ex

          查看答案和解析>>

          同步練習(xí)冊(cè)答案