日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=log4(2x+3﹣x2).
          (1)求f(x)的定義域及單調(diào)區(qū)間;
          (2)求f(x)的最大值,并求出取得最大值時(shí)x的值;
          (3)設(shè)函數(shù)g(x)=log4[(a+2)x+4],若不等式f(x)≤g(x)在x∈(0,3)上恒成立,求實(shí)數(shù)a的取值范圍.

          【答案】
          (1)解:令2x+3﹣x2>0,

          解得:x∈(﹣1,3),

          即f(x)的定義域?yàn)椋ī?,3),

          令t=2x+3﹣x2

          則y=log4t,

          ∵y=log4t為增函數(shù),

          x∈(﹣1,1]時(shí),t=2x+3﹣x2為增函數(shù);

          x∈[1,3)時(shí),t=2x+3﹣x2為減函數(shù);

          故f(x)的單調(diào)增區(qū)間為(﹣1,1];f(x)的單調(diào)減區(qū)間為[1,3)


          (2)解:由(1)知當(dāng)x=1時(shí),t=2x+3﹣x2取最大值4,

          此時(shí)函數(shù)f(x)取最大值1


          (3)解:若不等式f(x)≤g(x)在x∈(0,3)上恒成立,

          則2x+3﹣x2≤(a+2)x+4在x∈(0,3)上恒成立,

          即x2+ax+1≥0在x∈(0,3)上恒成立,

          即a≥﹣(x+ )在x∈(0,3)上恒成立,

          當(dāng)x∈(0,3)時(shí),x+ ≥2,則﹣(x+ )≤﹣2,

          故a≥﹣2


          【解析】(1)令2x+3﹣x2>0,可得函數(shù)的定義域,利用復(fù)合函數(shù)“同增異減”的原則,可得函數(shù)f(x)的單調(diào)區(qū)間;(2)由(1)中函數(shù)的單調(diào)性,可得當(dāng)x=1時(shí),函數(shù)f(x)取最大值1;(3)若不等式f(x)≤g(x)在x∈(0,3)上恒成立,即a≥﹣(x+ )在x∈(0,3)上恒成立,解得實(shí)數(shù)a的取值范圍.
          【考點(diǎn)精析】解答此題的關(guān)鍵在于理解復(fù)合函數(shù)單調(diào)性的判斷方法的相關(guān)知識,掌握復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (1)求函數(shù)在區(qū)間上的最大值;

          (2)若是函數(shù)圖像上不同的三點(diǎn),且,試判斷之間的大小關(guān)系,并證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在正方體中, 分別是線段的中點(diǎn).

          (1)求異面直線所成角的大。

          (2)求直線與平面所成角的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】不等式(x+2)(x﹣1)>0的解集為(
          A.{x|x<﹣2或x>1}
          B.{x|﹣2<x<1}
          C.{x|x<﹣1或x>2}
          D.{x|﹣1<x<2}

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)= ,若存在x1 , x2∈R且x1≠x2 , 使得f(x1)=f(x2)成立,則實(shí)數(shù)a的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)= (a、b為常數(shù)),且f(1)= ,f(0)=0.
          (1)求函數(shù)f(x)的解析式;
          (2)判斷函數(shù)f(x)在定義域上的奇偶性,并證明;
          (3)對于任意的x∈[0,2],f(x)(2x+1)<m4x恒成立,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】【選做題】在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.請?jiān)?/span>答卷卡指定區(qū)域內(nèi)作答.解答應(yīng)寫出文字說明、證明過程或演算步驟.

          A.選修4—1:幾何證明選講

          如圖,△ABC的頂點(diǎn)A,C在圓O上,B在圓外,線段AB與圓O交于點(diǎn)M

          (1)若BC是圓O的切線,且AB=8,BC=4,求線段AM的長度;

          (2)若線段BC與圓O交于另一點(diǎn)N,且AB=2AC,求證:BN=2MN

          B.選修4—2:矩陣與變換

          設(shè)ab∈R.若直線laxy-7=0在矩陣A= 對應(yīng)的變換作用下,得到的直線為l:9xy-91=0.求實(shí)數(shù)ab的值.

          C.選修4—4:坐標(biāo)系與參數(shù)方程

          在平面直角坐標(biāo)系xOy中,直線l (t為參數(shù)),與曲線C (k為參數(shù))交于A,B兩點(diǎn),求線段AB的長.

          D.選修4—5:不等式選講

          設(shè)ab,求證:a4+6a2b2b4>4ab(a2b2).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)集合A={x|y=log2(x﹣1)},B={y|y=﹣x2+2x﹣2,x∈R}
          (1)求集合A,B;
          (2)若集合C={x|2x+a<0},且滿足B∪C=C,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對于任意實(shí)數(shù)x,符號[x]表示不超過x的最大整數(shù),如[2.2]=2,[﹣3.5]=﹣4,設(shè)數(shù)列{an}的通項(xiàng)公式為an=[log21]+[log22]+[log23]+…[log2(2n﹣1)].
          (1)求a1a2a3的值;
          (2)是否存在實(shí)數(shù)a,使得an=(n﹣2)2n+a(n∈N*),并說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案