日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知圓C:x2+y2+Dx+Ey+3=0關(guān)于直線x+y-1=0對(duì)稱,圓心C在第二象限,半徑為。
          (1)求圓C的方程;
          (2)是否存在直線l與圓C相切,且在x軸、y軸上的截距相等?若存在,求直線的方程;若不存在,說明理由。
          解:(1)由x2+y2+Dx+Ey+3=0,

          ∴圓C的圓心C的坐標(biāo)為
          半徑
          ,得
          故D2+E2=20  ①
          ∵圓C關(guān)于直線x+y-1=0對(duì)稱,
          故圓心在直線x+y-1=0上,
          ,故D+E=-2,②
          由②式,得E=-2-D,
          代入①式,得D2+(-2-D)2=20,
          即D2+2D-8=0,解得D=-4,或D=2
          又∵圓心在第二象限,
          ,解得D>0,
          故D=2,E=-2-2=-4,
          ∴圓C的方程為:x2+y2+2x-4y+3=0,
          即(x+1)2+(y-2)2=2。
          (2)直線l在x軸,y軸上的截距相等,設(shè)為a,
          由(1)知圓C的圓心C(-1,2),
          當(dāng)a=0時(shí),直線l過原點(diǎn),設(shè)其方程為y=kx,
          即kx-y=0,
          若直線l:kx-y-0與圓C相切,則
          即k2-4k-2=0,解得
          此時(shí)直線l的方程為

          當(dāng)a≠0時(shí),直線l的方程為
          即x+y-a=0,
          若直線l:x+y-a=0與圓C相切,

          即|a-1|=2,解得a=-1,或a=3
          此時(shí)直線l的方程為x+y+1=0,或x+y-3=0
          綜上所述,存在四條直線滿足題意,其方程為或x+y+1=0或x+y-3=0。
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知圓C:x2+y2-6x-4y+8=0.以圓C與坐標(biāo)軸的交點(diǎn)分別作為雙曲線的一個(gè)焦點(diǎn)和頂點(diǎn),則適合上述條件雙曲線的標(biāo)準(zhǔn)方程為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)一個(gè)圓與x軸相切,圓心在直線3x-y=0上,且被直線x-y=0所截得的弦長(zhǎng)為2
          7
          ,求此圓方程.
          (2)已知圓C:x2+y2=9,直線l:x-2y=0,求與圓C相切,且與直線l垂直的直線方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•普陀區(qū)一模)如圖,已知圓C:x2+y2=r2與x軸負(fù)半軸的交點(diǎn)為A.由點(diǎn)A出發(fā)的射線l的斜率為k,且k為有理數(shù).射線l與圓C相交于另一點(diǎn)B.
          (1)當(dāng)r=1時(shí),試用k表示點(diǎn)B的坐標(biāo);
          (2)當(dāng)r=1時(shí),試證明:點(diǎn)B一定是單位圓C上的有理點(diǎn);(說明:坐標(biāo)平面上,橫、縱坐標(biāo)都為有理數(shù)的點(diǎn)為有理點(diǎn).我們知道,一個(gè)有理數(shù)可以表示為
          qp
          ,其中p、q均為整數(shù)且p、q互質(zhì))
          (3)定義:實(shí)半軸長(zhǎng)a、虛半軸長(zhǎng)b和半焦距c都是正整數(shù)的雙曲線為“整勾股雙曲線”.
          當(dāng)0<k<1時(shí),是否能構(gòu)造“整勾股雙曲線”,它的實(shí)半軸長(zhǎng)、虛半軸長(zhǎng)和半焦距的長(zhǎng)恰可由點(diǎn)B的橫坐標(biāo)、縱坐標(biāo)和半徑r的數(shù)值構(gòu)成?若能,請(qǐng)嘗試探索其構(gòu)造方法;若不能,試簡(jiǎn)述你的理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•瀘州一模)已知圓C:x2+y2=r2(r>0)與拋物線y2=40x的準(zhǔn)線相切,若直線l:
          x
          a
          y
          b
          =1
          與圓C有公共點(diǎn),且公共點(diǎn)都為整點(diǎn)(整點(diǎn)是指橫坐標(biāo).縱坐標(biāo)都是整數(shù)的點(diǎn)),那么直線l共有( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知圓C:x2+y2=4與直線L:x+y+a=0相切,則a=( 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案