日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù),其中.
          (1)若對一切x∈R,≥1恒成立,求a的取值集合;
          (2)在函數(shù)的圖像上取定兩點(diǎn),記直線AB的斜率   為k,問:是否存在x0∈(x1,x2),使成立?若存在,求的取值范圍;若不存在,請說明理由.

          (1) 的取值集合為;
          (2)存在使成立.且的取值范圍為

          解析試題分析:(1)利用導(dǎo)數(shù)求出的最小值,令其大于等于,解得的取值集合; (2)由題意知,令然后說明在內(nèi)有唯一零點(diǎn),故當(dāng)且僅當(dāng)時(shí), .
          試題解析:(1)若,則對一切,
          這與題設(shè)矛盾,又,故.

          當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增,故當(dāng)時(shí), 取最小值
          于是對一切恒成立,當(dāng)且僅當(dāng)
          .                、

          當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.
          故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.
          綜上所述,的取值集合為.
          (2)由題意知,



          ,則.
          當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.
          故當(dāng),
          從而,
          所以
          因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使單調(diào)遞增,故這樣的是唯一的,且.故當(dāng)且僅當(dāng)時(shí), .
          綜上所述,存在使成立.且的取值范圍為.
          考點(diǎn):直線斜率定義、利用導(dǎo)數(shù)求函數(shù)最值、利用導(dǎo)數(shù)求函數(shù)單調(diào)性、零點(diǎn)存在定理.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè),函數(shù).
          (1)若,求曲線在點(diǎn)處的切線方程;
          (2)若無零點(diǎn),求實(shí)數(shù)的取值范圍;
          (3)若有兩個(gè)相異零點(diǎn)、,求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù).
          (1)若函數(shù)為奇函數(shù),求a的值;
          (2)若函數(shù)處取得極大值,求實(shí)數(shù)a的值;
          (3)若,求在區(qū)間上的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù),,函數(shù)的圖象與軸的交點(diǎn)也在函數(shù)的圖象上,且在此點(diǎn)有公切線.
          (Ⅰ)求,的值;
          (Ⅱ)試比較的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù).
          (1)若時(shí),求處的切線方程;
          (2)當(dāng)時(shí),,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)
          (Ⅰ)若上是增函數(shù),求實(shí)數(shù)的取值范圍.
          (Ⅱ)若的一個(gè)極值點(diǎn),求上的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          某校內(nèi)有一塊以為圓心,為常數(shù),單位為米)為半徑的半圓形(如圖)荒地,該?倓(wù)處計(jì)劃對其開發(fā)利用,其中弓形區(qū)域(陰影部分)用于種植學(xué)校觀賞植物,區(qū)域用于種植花卉出售,其余區(qū)域用于種植草皮出售.已知種植學(xué)校觀賞植物的成本是每平方米20元,種植花卉的利潤是每平方米80元,種植草皮的利潤是每平方米30元.

          (1)設(shè)(單位:弧度),用表示弓形的面積;
          (2)如果該校總務(wù)處邀請你規(guī)劃這塊土地,如何設(shè)計(jì)的大小才能使總利潤最大?并求出該最大值.
          (參考公式:扇形面積公式,表示扇形的弧長)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù)
          (1)求的單調(diào)區(qū)間、最大值;
          (2)討論關(guān)于的方程的根的個(gè)數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù),若在點(diǎn)處的切線斜率為
          (Ⅰ)用表示;
          (Ⅱ)設(shè),若對定義域內(nèi)的恒成立,
          (ⅰ)求實(shí)數(shù)的取值范圍;
          (ⅱ)對任意的,證明:

          查看答案和解析>>

          同步練習(xí)冊答案