日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅰ)觀察①tan10°tan20°+tan20°tan60°+tan60°tan10°=1
              ②tan5°tan10°+tan10°tan75°+tan75°tan5°=1
          由以上兩式成立,推廣到一般結(jié)論,寫(xiě)出你的推論.
          (Ⅱ)函數(shù)f(x)=-x2+2ax+1-a在區(qū)間[0,1]上有最大值2,求實(shí)數(shù)a的值.
          分析:(I)觀察所給的兩個(gè)等式,發(fā)現(xiàn)左邊都是兩個(gè)銳角的正切的乘積形式,一共有三項(xiàng),且三個(gè)角的和為定值:直角,右邊的值都為常數(shù)1,由此類比推廣到一般結(jié)論即可.
          (II)先求對(duì)稱軸,比較對(duì)稱軸和區(qū)間的關(guān)系,利用開(kāi)口向下的二次函數(shù)離對(duì)稱軸越近函數(shù)值越大來(lái)解題即可.
          解答:解:(I)觀察①、②,可得:
          若銳角α,β,γ滿足α+β+γ=90°,
          則tanαtanβ+tanβtanγ+tanαtanγ=1.
          (II)對(duì)稱軸x=a,
          當(dāng)a<0時(shí),[0,1]是f(x)的遞減區(qū)間,f(x)max=f(0)=1-a=2
          ∴a=-1;
          當(dāng)a>1時(shí),[0,1]是f(x)的遞增區(qū)間,f(x)max=f(1)=a=2
          ∴a=2;
          當(dāng)0≤a≤1時(shí),f(x)max=f(a)=)=a2-a+1=2,
          解得a=
          5
          2
          ,與0≤a≤1矛盾;
          所以a=-1或a=2.
          點(diǎn)評(píng):本題主要考查了歸納推理,以及二次函數(shù)在閉區(qū)間上的最值,同時(shí)考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          觀察(1)tan10°tan20°+tan20°tan60°+tan60°tan10°=1
             (2)tan5°tan10°+tan10°tan75°+tan75°tan5°=1
          由以上兩式成立,推廣到一般結(jié)論,寫(xiě)出你的推論
          若α,β,γ都不是90°,且α+β+γ=90°,tanαtanβ+tanβtanγ+tanαtanγ=1
          若α,β,γ都不是90°,且α+β+γ=90°,tanαtanβ+tanβtanγ+tanαtanγ=1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (Ⅰ)觀察①tan10°tan20°+tan20°tan60°+tan60°tan10°=1
              ②tan5°tan10°+tan10°tan75°+tan75°tan5°=1
          由以上兩式成立,推廣到一般結(jié)論,寫(xiě)出你的推論.
          (Ⅱ)函數(shù)f(x)=-x2+2ax+1-a在區(qū)間[0,1]上有最大值2,求實(shí)數(shù)a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年遼寧省錦州市高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          (Ⅰ)觀察①tan10°tan20°+tan20°tan60°+tan60°tan10°=1
              ②tan5°tan10°+tan10°tan75°+tan75°tan5°=1
          由以上兩式成立,推廣到一般結(jié)論,寫(xiě)出你的推論.
          (Ⅱ)函數(shù)f(x)=-x2+2ax+1-a在區(qū)間[0,1]上有最大值2,求實(shí)數(shù)a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年遼寧省錦州市高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          (Ⅰ)觀察①tan10°tan20°+tan20°tan60°+tan60°tan10°=1
              ②tan5°tan10°+tan10°tan75°+tan75°tan5°=1
          由以上兩式成立,推廣到一般結(jié)論,寫(xiě)出你的推論.
          (Ⅱ)函數(shù)f(x)=-x2+2ax+1-a在區(qū)間[0,1]上有最大值2,求實(shí)數(shù)a的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案