日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)P是橢圓+=1上一點,F1、F2是橢圓的兩個焦點,則cos∠F1PF2的最小值是

          A.-                         B.-1                           C.                                   D.

          解析:設(shè)P(x0,y0),則-3≤x0≤3.

          cos∠F1PF2=

          =

          =

          ∴當x0=0時,cos∠F1PF2最小,最小值為-.

          答案:A

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•江門一模)已知直線x-
          3
          y+
          3
          =0經(jīng)過橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的一個頂點B和一個焦點F.
          (1)求橢圓的離心率;
          (2)設(shè)P是橢圓C上動點,求||PF|-|PB||的取值范圍,并求||PF|-|PB||取最小值時點P的坐標.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•甘肅一模)設(shè)橢圓M:
          x2
          a2
          +
          y2
          2
          =1
          (a>
          2
          )
          的右焦點為F1,直線l:x=
          a2
          a2-2
          與x軸交于點A,若
          OF1
          +2
          AF1
          =0
          (其中O為坐標原點).
          (1)求橢圓M的方程;
          (2)設(shè)P是橢圓M上的任意一點,EF為圓N:x2+(y-2)2=1的任意一條直徑(E、F為直徑的兩個端點),求
          PE
          PF
          的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•青島一模)設(shè)橢圓M:
          x2
          a2
          +
          y2
          8
          =1(a>2
          2
          )
          的右焦點為F1,直線l:x=
          a2
          a2-8
          與x軸交于點A,若
          OF1
          +2
          AF1
          =
          0
          (其中O為坐標原點).
          (Ⅰ)求橢圓M的方程;
          (Ⅱ)設(shè)P是橢圓M上的任一點,EF為圓N:x2+(y-2)2=1的任一條直徑,求
          PE
          PF
          的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,橢圓E:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的右焦點F2與拋物線y2=8x的焦點重合,過F2作與x軸垂直的直線l與橢圓交于S、T兩點,與拋物線交于C、D兩點,且
          |CD|
          |ST|
          =2
          6

          (Ⅰ)求橢圓E的方程;
          (Ⅱ)設(shè)P是橢圓M上的任意一點,EF為圓N:x2+(y-2)2=1的任意一條直徑(E、F為直徑的兩個端點),求
          PE
          PF
          的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•青島一模)已知點M在橢圓D:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)上,以M為圓心的圓與x軸相切于橢圓的右焦點,若圓M與y軸相交于A,B兩點,且△ABM是邊長為
          2
          6
          3
          的正三角形.
          (Ⅰ)求橢圓D的方程;
          (Ⅱ)設(shè)P是橢圓D上的一點,過點P的直線l交x軸于點F(-1,0),交y軸于點Q,若
          QP
          =2
          PF
          ,求直線l的斜率;
          (Ⅲ)過點G(0,-2)作直線GK與橢圓N:
          3x2
          a2
          +
          4y2
          b2
          =1
          左半部分交于H,K兩點,又過橢圓N的右焦點F1做平行于HK的直線交橢圓N于R,S兩點,試判斷滿足|GH|•|GK|=3|RF1|•|F1S|的直線GK是否存在?請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案