日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點,BM的延長線交⊙O于N,過N點的切線交CA的延長線于P.
          (1)求證:PM2=PA•PC;
          (2)若⊙O的半徑為2,OA=OM,求MN的長.
          【答案】分析:(1)做出輔助線連接ON,根據(jù)切線得到直角,根據(jù)垂直得到直角,即∠ONB+∠BNP=90°且∠OBN+∠BMO=90°,根據(jù)同角的余角相等,得到角的相等關(guān)系,得到結(jié)論.
          (2)本題是一個求線段長度的問題,在解題時,應(yīng)用相交弦定理,即BM•MN=CM•MA,代入所給的條件,得到要求線段的長.
          解答:(1)證明:連接ON,因為PN切⊙O于N,
          ∴∠ONP=90°,
          ∴∠ONB+∠BNP=90°
          ∵OB=ON,
          ∴∠OBN=∠ONB
          因為OB⊥AC于O,
          ∴∠OBN+∠BMO=90°,
          故∠BNP=∠BMO=∠PMN,PM=PN
          ∴PM2=PN2=PA•PC
          (2)∵OM=2,BO=2,BM=4
          ∵BM•MN=CM•MA=((2)=8,
          ∴MN=2
          點評:本題要求證明一個PM2=PA•PC結(jié)論,實際上這是一個名叫切割線定理的結(jié)論,可以根據(jù)三角形相似對應(yīng)邊成比例來證明,這是一個基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點,BM的延長線交⊙O于N,過N點的切線交CA的延長線于P.
          (Ⅰ)求證:PM2=PA•PC;
          (Ⅱ)若⊙O的半徑為2
          3
          ,OA=
          3
          OM,求MN的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,⊙O的半徑OB垂直于直徑AC,D為AO上一點,BD的延長線交⊙O于點E,過E點的圓的切線交CA的延長線于P.求證:PD2=PA•PC.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (選做題)在A,B,C,D四小題中只能選做2題,每小題10分,共計20分.請在答題卡指定區(qū)域內(nèi)作答,解答時應(yīng)寫出文字說明、證明過程或演算步驟.
          A.選修4-1:幾何證明選講
          如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點,BM的延長線交⊙O于N,過
          N點的切線交CA的延長線于P.
          (1)求證:PM2=PA•PC;
          (2)若⊙O的半徑為2
          3
          ,OA=
          3
          OM,求MN的長.
          B.選修4-2:矩陣與變換
          曲線x2+4xy+2y2=1在二階矩陣M=
          .
          1a
          b1
          .
          的作用下變換為曲線x2-2y2=1,求實數(shù)a,b的值;
          C.選修4-4:坐標(biāo)系與參數(shù)方程
          在極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=
          2
          cos(θ+
          π
          4
          )
          ,以極點為原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
          x=1+
          4
          5
          y=-1-
          3
          5
          (t為參數(shù)),求直線l被圓C所截得的弦長.
          D.選修4-5:不等式選講
          設(shè)a,b,c均為正實數(shù).
          (1)若a+b+c=1,求a2+b2+c2的最小值;
          (2)求證:
          1
          2a
          +
          1
          2b
          +
          1
          2c
          1
          b+c
          +
          1
          c+a
          +
          1
          a+b

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•鹽城一模)[選做題]在A、B、C、D四小題中只能選做2題,每小題10分,計20分.請把答案寫在答題紙的指定區(qū)域內(nèi).A.(選修4-1:幾何證明選講)
          如圖,⊙O的半徑OB垂直于直徑AC,D為AO上一點,BD的延長線交⊙O于點E,過E點的圓的切線交CA的延長線于P.
          求證:PD2=PA•PC.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•保定一模)選修4-1:幾何證明選講
          如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點,BM的延長線交⊙O于N,過N點的切線交CA的延長線于P.
          (1)求證:PM2=PA•PC;
          (2)⊙O的半徑為2
          3
          ,OM=2,求MN的長.

          查看答案和解析>>

          同步練習(xí)冊答案