日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知△ABC中,BC邊上的高所在的直線(xiàn)方程為x-2y+1=0,∠A的角平分線(xiàn)所在的直線(xiàn)方程為y=0,點(diǎn)C的坐標(biāo)為(1,2).
          (Ⅰ)求點(diǎn)A和點(diǎn)B的坐標(biāo);
          (Ⅱ)又過(guò)點(diǎn)C作直線(xiàn)l與x軸、y軸的正半軸分別交于點(diǎn)M,N,求△MON的面積最小值及此時(shí)直線(xiàn)l的方程.
          【答案】分析:(I)列方程組求出A點(diǎn)坐標(biāo),根據(jù)兩直線(xiàn)垂直的條件求出BC、AB所在的直線(xiàn)方程,然后解方程組得B的坐標(biāo);
          (II)若直線(xiàn)分別與x軸、y軸的負(fù)半軸交于A,B兩點(diǎn),說(shuō)明直線(xiàn)的斜率小于0,設(shè)出斜率根據(jù)直線(xiàn)過(guò)的C點(diǎn),寫(xiě)出直線(xiàn)方程,求出△AOB面積的表達(dá)式,利用基本不等式求出面積的最小值,即可得到面積最小值的直線(xiàn)的方程.
          解答:解:(Ⅰ)因?yàn)辄c(diǎn)A在BC邊上的高x-2y+1=0上,又在∠A的角平分線(xiàn)y=0上,所以解方程組得A(-1,0).
          ∵BC邊上的高所在的直線(xiàn)方程為x-2y+1=0,
          ∴kBC=-2,
          ∵點(diǎn)C的坐標(biāo)為(1,2),所以直線(xiàn)BC的方程為2x+y-4=0,
          ∵kAC=-1,∴kAB=-kAC=1,所以直線(xiàn)AB的方程為x+y+1=0,
          解方程組得B(5,-6),
          故點(diǎn)A和點(diǎn)B的坐標(biāo)分別為(-1,0),(5,-6).    
          (Ⅱ)依題意直線(xiàn)的斜率存在,設(shè)直線(xiàn)l的方程為:y-2=k(x-1)(k<0),則,所以,
          當(dāng)且僅當(dāng)k=-2時(shí)取等號(hào),所以(S△AOBmin=4,此時(shí)直線(xiàn)l的方程是2x+y-4=0.
          點(diǎn)評(píng):本題是中檔題,考查三角形面積的最小值的求法,基本不等式的應(yīng)用,考查計(jì)算能力,轉(zhuǎn)化思想的應(yīng)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知△ABC中,|BC|=2,
          |AB||AC|
          =m
          ,求點(diǎn)A的軌跡方程,并說(shuō)明軌跡是什么圖形.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知△ABC中,BC邊上的高所在的直線(xiàn)方程為x-2y+1=0,∠A的角平分線(xiàn)所在的直線(xiàn)方程為y=0,點(diǎn)C的坐標(biāo)為(1,2).
          (Ⅰ)求點(diǎn)A和點(diǎn)B的坐標(biāo);
          (Ⅱ)又過(guò)點(diǎn)C作直線(xiàn)l與x軸、y軸的正半軸分別交于點(diǎn)M,N,求△MON的面積最小值及此時(shí)直線(xiàn)l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知△ABC中,BC=4,AC=8,∠C=60°,則
          BC
          CA
          =
          -16
          -16

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知△ABC中,BC=2,AB=
          2
          AC,則三角形面積的最大值為
          2
          2
          2
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖1-2-10,已知△ABC中,DEBC,CD、BE交于點(diǎn)O,連結(jié)AO并延長(zhǎng)交BC于點(diǎn)F,AODE于點(diǎn)G.求證:=.

          圖1-2-10

          查看答案和解析>>

          同步練習(xí)冊(cè)答案