日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).它與曲線交于兩點(diǎn).

          (1)求的長(zhǎng);

          (2)在以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)的極坐標(biāo)為,求點(diǎn)到線段中點(diǎn)的距離.

          【答案】(1);(2).

          【解析】試題分析:(1)把直線的參數(shù)方程對(duì)應(yīng)的坐標(biāo)代入曲線方程并化簡(jiǎn)得

          ,即可求解的長(zhǎng);

          2)易得點(diǎn)在平面直角坐標(biāo)系下的坐標(biāo)為,根據(jù)中點(diǎn)坐標(biāo)的性質(zhì)可得中點(diǎn)對(duì)應(yīng)的參數(shù),再由的幾何意義可得點(diǎn)的距離。.

          試題解析:(1)把直線的參數(shù)方程對(duì)應(yīng)的坐標(biāo)代入曲線方程并化簡(jiǎn)得,

          設(shè)對(duì)應(yīng)的參數(shù)分別為,則,

          所以.

          2)易得點(diǎn)在平面直角坐標(biāo)系下的坐標(biāo)為,

          根據(jù)中點(diǎn)坐標(biāo)的性質(zhì)可得中點(diǎn)對(duì)應(yīng)的參數(shù)為,

          所以由的幾何意義可得點(diǎn)的距離為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:

          喜愛打籃球

          不喜愛打籃球

          合計(jì)

          男生

          5

          女生

          10

          合計(jì)

          50

          已知在全部50人中隨機(jī)抽取1人抽到喜愛打籃球的學(xué)生的概率為。

          (1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;

          (2)是否有99%的把握認(rèn)為喜愛打籃球與性別有關(guān)?說(shuō)明你的理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=exe-x(xR,e為自然對(duì)數(shù)的底數(shù)).

          (1)判斷函數(shù)f(x)的奇偶性與單調(diào)性.

          (2)是否存在實(shí)數(shù)t,使不等式f(x-t)+f(x2-t2)≥0對(duì)一切x都成立?若存在,求出t;若不存在請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某公司為招聘新員工設(shè)計(jì)了一個(gè)面試方案:應(yīng)聘者從6道備選題中一次性隨機(jī)抽取3道題,按題目要求獨(dú)立完成.規(guī)定:至少正確完成其中2道題的便可通過.已知6道備選題中應(yīng)聘者甲有4道題能正確完成,2道題不能完成;應(yīng)聘者乙每題正確完成的概率都是,且每題正確完成與否互不影響.

          (1)分別求甲、乙兩人正確完成面試題數(shù)的分布列及數(shù)學(xué)期望;

          (2)請(qǐng)分析比較甲、乙兩人誰(shuí)面試通過的可能性大?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】函數(shù) 處取得極值.

          1)求 的單調(diào)區(qū)間;

          2)若 在定義域內(nèi)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù) 的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知圓的半徑為,圓心在直線y=2x,圓被直線x-y=0截得的弦長(zhǎng)為4,求圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】現(xiàn)在頸椎病患者越來(lái)越多,甚至大學(xué)生也出現(xiàn)了頸椎病,年輕人患頸椎病多與工作、生活方式有關(guān),某調(diào)查機(jī)構(gòu)為了了解大學(xué)生患有頸椎病是否與長(zhǎng)期過度使用電子產(chǎn)品有關(guān),在遂寧市中心醫(yī)院隨機(jī)的對(duì)入院的50名大學(xué)生進(jìn)行了問卷調(diào)查,得到了如下的4×4列聯(lián)表:

          未過度使用

          過度使用

          合計(jì)

          未患頸椎病

          15

          5

          20

          患頸椎病

          10

          20

          30

          合計(jì)

          25

          25

          50

          (1)是否有99.5%的把握認(rèn)為大學(xué)生患頸錐病與長(zhǎng)期過度使用電子產(chǎn)品有關(guān)?

          (2)已知在患有頸錐病的10名未過度使用電子產(chǎn)品的大學(xué)生中,有3名大學(xué)生又患有腸胃炎,現(xiàn)在從上述的10名大學(xué)生中,抽取3名大學(xué)生進(jìn)行其他方面的排查,記選出患腸胃炎的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.

          參考數(shù)據(jù)與公式:

          P(K2≥k)

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          k

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知f(x)是定義在R上且以2為周期的偶函數(shù),當(dāng)0≤x≤1時(shí),f(x)=x2.如果函數(shù)g(x)=f(x)-(x+m)有兩個(gè)零點(diǎn),則實(shí)數(shù)m的值為( )

          A.2k(k∈Z) B.2k或2k+ (k∈Z)

          C.0 D.2k或2k- (k∈Z)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,三棱柱ABCA1B1C1的側(cè)棱與底面垂直,AC=9,BC=12,AB=15,AA1=12,點(diǎn)DAB的中點(diǎn).

          (1)求證:ACB1C;

          (2)求證:AC1∥平面CDB1.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案