日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓的由頂點(diǎn)為A,右焦點(diǎn)為F,直線與x軸交于點(diǎn)B且與直線交于點(diǎn)C,點(diǎn)O為坐標(biāo)原點(diǎn),,過(guò)點(diǎn)F的直線與橢圓交于不同的兩點(diǎn)M,N.

          (1)求橢圓的方程;
          (2)求的面積的最大值.

          (1);(2)

          解析試題分析:(1)由直線與x軸交于點(diǎn)B且與直線交于點(diǎn)C, .即可得到關(guān)于的兩個(gè)方程.從而得到結(jié)論.
          (2)首先考慮直線MN垂直于x軸的情況,求出的面積.由(1)得到的方程聯(lián)立直線方程,消去y得到一個(gè)關(guān)于x的方程,由韋達(dá)定理寫(xiě)出兩個(gè)等式.由弦長(zhǎng)公式即點(diǎn)到直線的距離公式,即可求出的面積的.再利用最值的求法,即可的結(jié)論.
          試題解析:(1) 因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/82/7/1e6rf4.png" style="vertical-align:middle;" /> , ,則,得
          橢圓方程為:
          (2) ①當(dāng)直線與x軸不垂直時(shí),設(shè)直線,
          消去
          所以    
          的距離,則,
           所以

          ② 當(dāng)軸時(shí),,所以的面積的最大值為 
          考點(diǎn):1.待定系數(shù)法求橢圓的方程.2.韋達(dá)定理.3.弦長(zhǎng)公式.4.點(diǎn)到直線的距離公式.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,已知平面內(nèi)一動(dòng)點(diǎn)到兩個(gè)定點(diǎn)的距離之和為,線段的長(zhǎng)為.

          (1)求動(dòng)點(diǎn)的軌跡的方程;
          (2)過(guò)點(diǎn)作直線與軌跡交于、兩點(diǎn),且點(diǎn)在線段的上方,
          線段的垂直平分線為.
          ①求的面積的最大值;
          ②軌跡上是否存在除外的兩點(diǎn)、關(guān)于直線對(duì)稱,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖所示,已知A、B、C是長(zhǎng)軸長(zhǎng)為4的橢圓E上的三點(diǎn),點(diǎn)A是長(zhǎng)軸的一個(gè)端點(diǎn),BC過(guò)橢圓中心O,且,|BC|=2|AC|.

          (1)求橢圓E的方程;
          (2)在橢圓E上是否存點(diǎn)Q,使得?若存在,有幾個(gè)(不必求出Q點(diǎn)的坐標(biāo)),若不存在,請(qǐng)說(shuō)明理由.
          (3)過(guò)橢圓E上異于其頂點(diǎn)的任一點(diǎn)P,作的兩條切線,切點(diǎn)分別為M、N,若直線MN在x軸、y軸上的截距分別為m、n,證明:為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,拋物線關(guān)于軸對(duì)稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn),點(diǎn)、均在拋物線上.

          (1)寫(xiě)出該拋物線的方程及其準(zhǔn)線方程;
          (2)當(dāng)的斜率存在且傾斜角互補(bǔ)時(shí),求的值及直線的斜率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          知橢圓的兩焦點(diǎn),離心率為,直線與橢圓交于兩點(diǎn),點(diǎn)軸上的射影為點(diǎn)

          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)求直線的方程,使的面積最大,并求出這個(gè)最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知是橢圓E:的兩個(gè)焦點(diǎn),拋物線的焦點(diǎn)為橢圓E的一個(gè)焦點(diǎn),直線y=上到焦點(diǎn)F1,F(xiàn)2距離之和最小的點(diǎn)P恰好在橢圓E上,

          (1)求橢圓E的方程;
          (2)如圖,過(guò)點(diǎn)的動(dòng)直線交橢圓于A、B兩點(diǎn),是否存在定點(diǎn)M,使以AB為直徑的圓恒過(guò)這個(gè)點(diǎn)?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知橢圓的右焦點(diǎn)為,點(diǎn)在橢圓上.

          (1)求橢圓的方程;
          (2)點(diǎn)在圓上,且在第一象限,過(guò)作圓的切線交橢圓于,兩點(diǎn),問(wèn):△的周長(zhǎng)是否為定值?如果是,求出定值;如果不是,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,橢圓C0=1(a>b>0,a、b為常數(shù)),動(dòng)圓C1:x2+y2,b<t1<a.點(diǎn)A1、A2分別為C0的左、右頂點(diǎn),C1與C0相交于A、B、C、D四點(diǎn).

          (1)求直線AA1與直線A2B交點(diǎn)M的軌跡方程;
          (2)設(shè)動(dòng)圓C2:x2+y2與C0相交于A′,B′,C′,D′四點(diǎn),其中b<t2<a,t1≠t2.若矩形ABCD與矩形A′B′C′D′的面積相等,證明:為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知過(guò)曲線上任意一點(diǎn)作直線的垂線,垂足為,且.
          ⑴求曲線的方程;
          ⑵設(shè)是曲線上兩個(gè)不同點(diǎn),直線的傾斜角分別為,當(dāng)變化且為定值時(shí),證明直線恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案